Volkswagen

Station Wagon/Bus

Official Service Manual Type 2

Robert Bentley Complete Service Manuals

Volkswagen Service Manuals

Audi Service Manual

Toyota Service Manual

Toyota Corolla 1600 Service Manual: 1975-1979, Robert Bentley

British Leyland Service Manuals

MG Workshop Manual, Complete Tuning and Maintenance for All Models from “M”-Type to TF 1500, by E. Brewer

Complete Official Austin-Healey 3000 Six and 3000: 1956-1968, British Leyland Motors

Capri Service Manual

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body and Frame</td>
<td>1</td>
</tr>
<tr>
<td>Front Axle</td>
<td>2</td>
</tr>
<tr>
<td>Fuel System</td>
<td>3</td>
</tr>
<tr>
<td>Electrical System</td>
<td>4</td>
</tr>
<tr>
<td>Engine and Clutch</td>
<td>5</td>
</tr>
<tr>
<td>Transmission and Rear Axle</td>
<td>6</td>
</tr>
<tr>
<td>Automatic Transmission</td>
<td>7</td>
</tr>
<tr>
<td>Brakes and Wheels</td>
<td>8</td>
</tr>
<tr>
<td>Lubrication and Maintenance</td>
<td>9</td>
</tr>
<tr>
<td>Fuel Injection</td>
<td>10</td>
</tr>
</tbody>
</table>
FOREWORD

Service to the owners is of top priority to the Volkswagen organization and has always included the continuing development and introduction of new and expanded services. In line with this purpose, Volkswagen of America, Inc. has introduced this Volkswagen Official Service Manual.

NOTE

The Manual covers only the automatic transmission used on 1978 and later models, not the manual transmission used on 1977 and earlier models and all but the final 1978 models.

The chassis numbers assigned to the Station Wagon, the Panel Truck, the Pickup Truck, the Kombi, and the Camper/Bus for the Model Years covered in this Manual are:

<table>
<thead>
<tr>
<th>Station Wagon</th>
<th>Kombi and Camper/Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968: 238 000 001 to 238 220 000</td>
<td>1968: 238 000 001 to 238 220 000</td>
</tr>
<tr>
<td>1969: 239 000 001 to 239 250 000</td>
<td>1969: 239 000 001 to 239 250 000</td>
</tr>
<tr>
<td>1970: 220 2000 001 to 220 C290 000</td>
<td>1970: 220 2000 001 to 220 C290 000</td>
</tr>
<tr>
<td>1971: 221 2000 001 to 221 P230 000</td>
<td>1971: 221 2000 001 to 221 P230 000</td>
</tr>
<tr>
<td>1972: 222 2000 001 to 222 220 000</td>
<td>1972: 222 2000 001 to 222 220 000</td>
</tr>
<tr>
<td>1973: 223 2000 001 to 223 250 000</td>
<td>1973: 223 2000 001 to 223 250 000</td>
</tr>
<tr>
<td>1975: 225 2000 001 to 225 290 000</td>
<td>1975: 225 2000 001 to 225 290 000</td>
</tr>
<tr>
<td>1977: 227 2000 001 to 227 290 000</td>
<td>1977: 227 2000 001 to 227 290 000</td>
</tr>
<tr>
<td>1978: 228 2000 001 to 228 220 000</td>
<td>1978: 228 2000 001 to 228 220 000</td>
</tr>
<tr>
<td>1979: 229 2000 001 to 229 230 000</td>
<td>1979: 229 2000 001 to 229 230 000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel Truck</th>
<th>Pickup Truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968: 218 000 001 to 218 220 000</td>
<td>1968: 268 000 001 to 268 220 000</td>
</tr>
<tr>
<td>1969: 219 000 001 to 219 250 000</td>
<td>1969: 269 000 001 to 269 250 000</td>
</tr>
<tr>
<td>1971: 211 2000 001 to 211 230 000</td>
<td>1971: 261 2000 001 to 261 230 000</td>
</tr>
<tr>
<td>1972: 212 2000 001 to 212 230 000</td>
<td>1972: 262 2000 001 to 262 230 000</td>
</tr>
<tr>
<td>1976: 216 2000 001 to 216 230 000</td>
<td>1976: 266 2000 001 to 266 230 000</td>
</tr>
<tr>
<td>1978: 218 2000 001 to 218 230 000</td>
<td>1978: 268 2000 001 to 268 230 000</td>
</tr>
</tbody>
</table>
The chasis number is found in three places: behind the front passenger’s seat on the right-hand side cover plate, and on the dashboard. This Manual is organized so that changes from model year to model year are noted, and if a change within one model year is made, the chassis number of the first VW with the change is given.

For the VW owner with mechanical skills and for independent garages, this Manual gives VW-approved specifications and procedures. In addition, a VW owner who has no intention of working on his car will find that reading and owning this Manual will enable him or her to discuss repairs intelligently with a professional mechanic.

The aim throughout has been simplicity, clarity, and completeness with step-by-step procedures and accurate specifications. Every human effort has been made to ensure the highest degree of accuracy possible. When the vast array of data presented in this Manual is taken into account, however, no claim to infallibility can be made.

The VW owner intending to do maintenance and repairs should have a set of metric wrenches, a torque wrench, screwdrivers, and feeler gauges; since these basic hand tools will be used in accomplishing a majority of the repairs described in this Manual. Usually, there will be a caution in the text when a repair requires special tools or special skills.

If you are a professional mechanic already working on imported cars, you may have some VW special tools that are shown in some of the illustrations in this Manual. If you have previously worked only on American manufactured cars you will not have to replace your expensive inch-inchers, vernier calipers, and other precision tools because specifications are given both in millimeters and in inches, except when special VW metric tools are indispensable (such measurements are given only in millimeters).

Volkswagen's are constantly being improved and sometimes such changes—both in parts and specifications—are made applicable to older VW's. Thus, a replacement part to be used on an older VW may not be the same as the part used in the original installation. Such changes are noted in this Manual. If a specification given in this Manual differs from one in an earlier source, disregard the earlier specification. The specifications in this Volkswagen Official Service Manual are accurate as of the publication date of this Manual.

Volkswagen offers an extensive warranty. Therefore before deciding to repair a VW that is covered by the new-car warranty, consult your Authorized VW Dealer. You may find that he can make the repair either free or at minimum cost.

Volkswagen of America, Inc.
Please read these warnings and cautions before proceeding with maintenance and repair work.

WARNING —

1. Never work under a lifted car unless it is solidly supported on stands installed for that purpose. Do not support a car on cinder blocks, hollow tiles or other props that may collapse under continuous load. Do not work under a car that is supported solely by a jack.

2. If you are going to work under a car on the ground, make sure that the ground is level. Block the wheels to keep the car from rolling. Disconnect the battery ground strap to prevent others from starting the car while you are under it.

3. Never run the engine unless the work area is well ventilated. Carbon monoxide kills.

4. Tie long hair behind your head. Do not wear a necktie, loose clothing, or necklaces when you work near machinery or running engines. If your hair, clothing or jewelry were to get caught in the machinery severe injury could result.

5. Disconnect the battery ground strap whenever you work on the fuel system or the electrical system. When you work around fuel, do not smoke or work near heaters or other fire hazards. Keep an approved fire extinguisher handy.

6. Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the car. Make sure its bulb is enclosed by a wire cage. The filament of an accidentally broken bulb can ignite spilled fuel or oil.

7. Catch draining fuel and brake fluid in suitable containers. Do not use food or beverage containers that might instead someone into drinking from them. Store flammable fluids away from live hazards. Wipe up spills at once, but do not store the flammable rag, which can ignite and burn spontaneously.

8. Finger rings should be removed so that they cannot cause electrical shorts, get caught in turning machinery, or be crushed by heavy parts.

9. Keep sparks, lit cigarettes, and open flame away from the fuel and the battery. If hydrogen gas escaping from the cell vents is ignited, it will ignite gas trapped in the cells and cause the battery to explode.

10. Always observe good workshop practices. Wear goggles when you operate machinery or work with battery acid. Gloves or other protective clothing should be worn whenever the job requires it.

CAUTION —

1. If you lack the skills, tools or equipment for any procedure described in this Manual, we suggest you leave such repairs to an Authorized Volkswagen dealer or other qualified shop. We especially urge you to consult your Authorized Volkswagen dealer before attempting any repairs on a car still covered by the new-car warranty.

2. Before starting a job, make certain that you have all necessary tools and parts on hand. Read all instructions thoroughly, do not attempt shortcuts. Use tools appropriately in the work area: use only replacement parts meeting Volkswagen specifications. Make all tools, parts, and procedures will not make good repairs.

3. Use pneumatic and electric tools only to loosen threaded parts and fasteners. Never use such tools to tighten fasteners, especially on light alloy parts.

4. Be mindful of the environment and ecology. Before you drain the crankcase, find out the proper way to dispose of the oil. Do not pour oil into the ground, down a drain, or into a storm drain, pond, or lake. Consult local ordinances that govern the disposal of wastes.
Letters from Manual users suggest that
the following rules need to be emphasized.

- The air cleaner should always be installed before you adjust the ignition timing, the idle speed, or the idle mixture.

- Always check and adjust the ignition timing while the engine is running, using a strobeoscopic timing light. Do not attempt to adjust the timing with the engine turned off which was the procedure used on early V-8s.

- Contrary to the mistaken instruction given in the 1972 Owner's Maintenance and Repair Guide, it is never necessary to make an additional timing mark on the crankshaft pulley before you adjust the ignition timing. Set the ignition timing using the existing V-shaped notch.

- During routine maintenance, adjust the idle speed only. The idle mixture does not require adjustment unless: (1) exhaust emissions are excessive; (2) the engine has had major repairs; (3) the carburetor has been replaced or rebuilt on a 1974 through 1974 model; or (4) the intake air sensor has been replaced or repaired on a 1975 or later model.

- Never try to adjust the idle speed until you have re-gapped or replaced the spark plugs, adjusted the valves, and set the ignition timing in accordance with the specifications. The engine must be thoroughly warmed up when you adjust the idle speed.

- Never try to adjust the idle speed by turning the throttle valve adjustment screw (the procedure used on most other cars and on earlier models). Doing this will upset the spark advance settings used only the idle speed adjustment procedure described in the FUEL SYSTEM or FUEL INJECTION sections of this Manual.

- After you have adjusted the idle speed, recheck the ignition timing. If the idle speed is correct and the ignition timing has not changed, you have adjusted the idle speed correctly.

- Before you adjust the idle mixture with an exhaust gas analyzer, always disconnect the evaporative emission control hose that connects the charcoal canister to the air cleaner. Otherwise, fuel tank vapors may upset the accuracy of the analyzer readings.

- Do not adjust the valves to less than the 0.15 mm (0.006 in.) clearance specified in this Manual. The older specified clearance specification, which may be given on an engine decal or in the Owner's Manual, has been superseded.

- Always adjust the valves while the engine is cold (oil temperature no more than 50°C (122°F)). Never attempt to adjust the valves with the engine hot or running.

- Never raise a V-8 by placing a jack under the engine or under the transmission. Doing this may ruin or seriously damage the light-alloy castings from which these components are made.

Directions for using torque wrenches calibrated in newton meters

In adopting the SI (Systeme International) units of measure, which constitute the Modernized Metric System, tool manufacturers are beginning to introduce torque wrenches that are calibrated in newton meters. As metric procedures, torque specifications, given in foot pounds (ft lbf) and metric kilogram meters (mkg) will eventually be replaced by torque specifications given in newton meters (Nm or Nm).

At present, there are too few torque wrenches calibrated in newton meters to justify the inclusion of newton meter torque specifications in this Manual. Nevertheless, if you purchase a new torque wrench, we recommend that you try to obtain one that is calibrated in newton meters. Such a tool can be easily used with this Manual by converting the meter-kilogram specifications to newton meters.

To convert meter-kilograms (mkg) to newton meters, simply disregard the decimal point. For example, 3.5 mkg would become 35 Nm. To convert newton meters (Nm) to meter-kilogram meters (mkg), multiply the newton meters by 1000. For example, 50 Nm would become 50,000 mkg. These conversions are not mathematically precise (3.5 mkg actually equals 34.4 Nm) but they are adequate for normal workshop purposes.
BODY AND FRAME

Contents

Introduction

1. General Description
 a. Doors and Windows . 4
 b. Seats . 4
 c. Heating and Ventilation . 4
 d. Interor Trim and Sliding Roof
 e. Camper Equipment . 4

2. Maintenance . 4

3. Bumpers
 a. Removing and Installing Front Bumper (1968 through 1972) . 5
 b. Removing and Installing Front Bumper (from 1973) . 6
 c. Removing and Installing Rear Bumper (1968 through 1972) . 6
 d. Removing and Installing Rear Bumper (from 1973) . 7

4. Fuel Filler Flap . 7

5. Doors
 a. Removing and Installing Front Door . 8
 b. Adjusting Door Stiker Plate (all doors and lids) . 8
 c. Removing and Installing Rear Door Trim Panel . 10
 d. Removing and Installing Door Latch . 11
 e. Removing and Installing Door Handle . 12
 f. Removing and Installing Window Rear Guide Channel and Run Channel . 13
 g. Removing and Installing Front Door Lock, Release Lever, and Pull Rod . 13

5.8 Removing and Installing Window
 a. Litter and Door Window Glass . 13
 b. Replacing Window Litter Cable . 15

5.9 Removing and Installing Vent
 a. Wing and Vent Wing Frame . 15

5.10 Removing and Installing Sliding
 a. Door Outside Runner Cover . 16

5.11 Removing and Installing Sliding Door . 17

5.12 Adjusting Sliding Door . 20

5.13 Removing and Installing Sliding Door Retainer . 21

5.14 Removing and Installing Remote
 a. Control Lock and Center Lock . 21

5.15 Adjusting Remote Control
 a. Lock and Center Lock . 22

5.16 Removing and Installing Sliding
 a. Door Retainer Rear Bracket . 24

5.17 Removing and Installing Hinge . 24

5.18 Removing and Installing Sliding Door Vent Wing . 26

6. Seats and Interior Trim
 a. Removing and Installing Partition Panel Trim . 27
 b. Removing and Installing Side Trim Panels . 28

7. Camper Equipment
 a. Removing and Installing Icebox
 a. Cabinet . 30
 b. Checking, Removing, and Installing Water Pump . 30
 c. Removing and Installing Front Bench Seat . 31
 d. Removing and Installing Rear Bench Seat . 31
2 Body and Frame

8. Sliding Roof (sun roof) 41
 8.1 Removing and Installing Sliding Roof 41
 8.2 Removing and Installing Sliding Roof Trim Panel 42
 8.3 Removing and Installing Runners and Cables 43
 8.4 Adjusting Cables 44
 8.5 Adjusting Sliding Roof Height 44

9. Outside Mirror 46

10. Heating and Ventilation 46
 10.1 Removing and Installing Fresh Air and Heating Controls 46
 10.2 Removing and Installing Fresh Air Flap and Linkage 47
 10.3 Heat Ducts and Ducts 48
Body and Frame

VW Type 2 vehicles have a full-length ladder-type frame that provides mounting points for the engine and controls. The frame is welded to the all-steel unit construction body so that the body and frame together form one rigid assembly. Despite minor variations, this basic design has remained unchanged during the model years covered by this Manual.

The Station Wagon, Kombi, Campmobile, Delivery Van, and Pick-Up Truck share the same frame. The frame consists of two channel-section side members, a number of crossmembers, supports, outriggers, and strainers—all joined by electric welding. The side members are approximately 50 x 100 mm (2 x 4 in.) in cross section with a wall thickness of about 2 mm (0.08 in.). The arched portions of the side members, located above the axle, are considerably deeper and have welded plates to form a box section. On vehicles with the sliding steel roof, Camper roof, or sliding doors on both sides, the body structure is further strengthened by reinforcement plates welded beneath the floor panel.

The seat box, integral with the frame, is built up of sheet steel pressings welded to one another and to the frame side members. The body floor panels, rear mounting platform, wheel housing, coach roof panel, and jack brackets are welded to the frame— in addition to being welded to the front, rear, or side panels of the body. This form of construction provides minimum strength with a minimum possibility of leaks and rattles.

The bodies of the Station Wagon, Kombi, Campmobile, and Delivery Van differ only in their window arrangements and trim. The Pick-Up and Double Cab Pick-Up bodies employ construction similar to that of the fully-enclosed models but with additional spot-welded box section strengthening pillars for the cab. Also, the Pick-Up’s cargo platform is made of ribbed 1-mm (.040 in.) steel panels, whereas the floor panels on fully-enclosed models are 0.76 and 0.89 mm (.030 and .035 in.) thick.

While many repairs described in this section can be carried out by car owners, a number of the procedures may be of practical value only to professional mechanics. If you lack the skills, tools, or the workshop necessary for making body adjustments and repairs, we suggest that you leave such work to an Authorized VW Dealer or other qualified shop. We especially urge you to consult your Authorized VW Dealer before attempting repairs on a car still covered by the new-car warranty.
1. GENERAL DESCRIPTION

The Type 2 body (Fig. 1-1) is a welded steel assembly that includes the front and rear ends, the inner and outer side panels, and the roof and floor panels. The side panels are welded to the side panels, forming two box-section

![Image](image.png)

Doors and Windows

An exceptionally large variety of door and window arrangements are available on Type 2 vehicles. On all models, the front passenger doors are attached to the front body pillar by two hinges. The Double Cab Pick-Up has two rear passenger doors that are mounted on hinges on the rear pillar. Sliding side doors are available on all fully-enclosed models and can be obtained on both sides of the Delivery Van. In addition, the fully-enclosed models have a large rear lid for access to the rear luggage compartment.

Seats

The driver's seat is individually mounted and adjustable front to rear. The angle of its seat back is also adjustable. Head restraints are available as an optional equipment on all seats. The seat in the rear passenger compartment can be removed so that large objects can be carried inside the vehicle.

Heating and Ventilation

Fresh air is drawn in by the engine cooling fan and is heated as it passes through the fins of the heater exchanger. The flow of heated air into the passenger compartment is regulated by flaps at the front of each heater exchanger and at the heat outlets. The flaps are controlled by cables that link them to three levers located on the instrument panel.

A fresh-air box in the front of the vehicle collects outside air for cooling and ventilation. The air enters the interior through two vents below the windshield and two outlets in the dashboard. Two additional fresh-air discharge vents are located on the partition between the front seats and the rear passenger compartment. They are individually adjustable and provide fresh air ventilation toward the rear.

The air that enters the interior of the vehicle via the fresh air circulation system is drawn out through openings in the front door frames. The air flow can be regulated by flaps on the insulating panel of the front doors. An air conditioning system and an auxiliary heater are available as optional equipment.

Interior Trim and Sliding Roof

Most portions of the floor panel and wheel housings inside the passenger compartment are soundproofed with thermoplastic damping materials, which also insulate against road noise. The floor is covered with synthetic rubber materials. The upholstery is easily cleaned vinyl that is weathered to improve air circulation.

A sliding steel roof (sunroof) is optional on several Type 2 models. Opening the sliding roof creates a clear space above the driver and front passenger seats. A hand crank controls the roof, which can be adjusted to any position from fully up to fully closed. For safety, the crank should be folded into its recess when not in use.

The interior trim panel for the sliding roof is made of the same perforated vinyl used for the headliner. The trim panel cannot be removed until the sliding roof and one of its side windows have been removed. The sliding roof can be adjusted, however, without completely removing the trim panel from the vehicle.

Campmobile Equipment

A wide variety of special equipment is available for Campmobile models. The center side window is a covered, knob-controlled,/Jalousie-type window with removable mosquito net screening. The roof trim is plywood. Wood-grained material is used for the closer, bench seats, storage bins, and other interior appointments. Campmobile information given in this Manual is directly applicable only to 1968 through 1973 models.

2. MAINTENANCE

Only one maintenance operation, lubrication of the door and lid hinges and locks, is required at regular mileage intervals. This procedure is covered in LUBRICATION AND MAINTENANCE. Care of the body, trim, upholstery, and windows is also described briefly in LUBRICATION AND MAINTENANCE.
3. BUMPERS

The bumpers on 1968 through 1972 models are similar and mounted in the same way. The bumpers and their mountings are different on 1973 and later vehicles, and will be covered separately from those of the earlier models.

3.1 Removing and Installing Front Bumper

(1968 through 1972)

Thoroughly clean the exposed threads on all bumper mounting bolts before you attempt to remove them. If corrosion is evident, or if the nuts or bolts are difficult to turn, apply penetrating oil to the threads.

To remove:

1. Remove the two side support bolts located just ahead of each front wheel as shown in Fig. 3-1.

2. Remove the bolts indicated in Fig. 3-2 from one bumper bracket.

![Fig. 3-1: Bumpers and washer (above) that hold the rear bumper also supports the body.](image1)

![Fig. 3-2: Bolts that hold bracket to frame.](image2)

3. Place a support under the unbolted end of the bumper to keep someone from falling. Then remove the two bolts from the other bracket and take the bumper off the car.

4. To remove the bracket from early models, remove the nuts and bolts indicated in Fig. 3-3; or later models, remove the nuts and bolts indicated in Fig. 3-4.

![Fig. 3-3: Nuts and bolts (above) that hold early bracket on bumper.](image3)

![Fig. 3-4: Nuts and bolts that hold late bracket on bumper.](image4)

5. To remove the end pieces, take out the three nuts and bolts that hold them on the bumper. Be careful not to damage the rubber seal.
Installation is the reverse of removal. Loosely install the assembled bumper and brackets on the vehicle. Then, by sliding the brackets and slide supports on their elongated bolt holes, obtain a uniform gap between the bumper and the body. When the bumper is properly aligned, torque the bolts to 3.5 mkg (25 ft-lb).

3.2 Removing and Installing Front Bumper

(From 1973)

The one-piece front bumper installed on 1973 and later models is bolted on an energy-absorbing support. The bumper is removed by taking out the four bolts, one of which is indicated in Fig. 3-5. Installation is the reverse of removal. Torque the bolts to 3.5 mkg (25 ft-lb).

![Fig. 3-5. Front bumper removal and installation on 1973 and later models.]

To remove bumper:

1. Remove the bolts and nuts at both sides of the vehicle that hold the cover plate to the body (Fig. 3-7).

2. Remove the two bolts that hold one of the bumper brackets to the frame as shown.

![Fig. 3-7. Bolts and nuts that hold the bumper.]

3. Place a support under the unbolted end of the bumper or have someone hold it. Then remove the two bolts from the other bracket and take the bumper off the car.

4. To remove the brackets, remove the nuts shown in Fig. 3-8.

![Fig. 3-8. Bracket removed from front bumper.]

NOTE

Thoroughly clean the exposed threads. If corrosion is evident or if the nuts are hard to turn, apply penetrating oil.

3.3 Removing and Installing Rear Bumper

(1968 through 1972)

The gravel guard on late rear bumpers can be removed and installed without removing the bumper. See Fig. 3-6.

![Fig. 3-6. Removal and installation of gravel guard.]

![Fig. 3-8. Bracket removed from rear bumper.]

The gravel guard can be removed and installed without removing the bumper. See Fig. 3-6.
5. To remove the cover plate, remove the nuts and bolts shown in Fig. 3-9.

![Fig. 3-9: Cover plate being removed or installed on rear bumper](image)

Installation is the reverse of removal. Be careful not to damage the rubber spacers by overtightening the bolt on the cover plate. Loosely install the assembled bumper and brackets on the vehicle. Then, by sliding the brackets and cover plate on their elongated bolt holes, obtain a uniform gap between the bumper and the body. When the bumper is properly aligned, torque the bracket bolts to 3.5 milg (25 ft lb). Do not overtighten the bolts that hold the cover plate on the body.

3.4 Removing and Installing Rear Bumper (from 1973)

To remove the rear bumper from 1973 and 1974 vehicles, remove the two bracket-securing bolts (see Fig. 3-10).

![Fig. 3-10: Over the two bolts that hold the rear bumper bracket on the frame members](image)

Installation is the reverse of removal. Loosely install the assembled bumper and brackets on the vehicle. Then, by sliding the brackets on their elongated bolt holes, obtain a uniform gap between the bumper and the body. When the bumper is properly aligned, torque the bracket bolts to 3.5 milg (25 ft lb).

4. FUEL FILLER FLAP

The fuel filler flap does not lock and is discontinued on 1974 and later models. It can be removed by taking out the two Phillips head screws indicated in Fig. 4-1. The rubber flaps can also be pried out and replaced. During installation, make sure that the flap contacts the body evenly all around before tightening the screws.

![Fig. 4-1: Screws removed that hold fuel filler flap](image)
5. Doors

In addition to the front doors and the sliding side door, the door locks and windows are also covered here.

5.1 Removing and installing Front Door

If the same door is to be reinstalled, mark the position of the hinges on the body. This will prevent you having to align the door later. From Chassis No. 235 2126 032 new hinges (Part No. 237 031 005) are used on the front doors. When installing a new door on an earlier vehicle, you must also install the new-type hinges, which are maintenance-free and do not require fitting. However, if you press out the hinge pins, you must be careful not to damage the felt bushing when the pin is reinserted. Otherwise the hinge will jam and may then require periodic lubrication.

To remove:

1. Take out totally all the pins for the door check stop. Remove the pin and disconnect the stop.
2. With the door solidly supported so that the upper hinge will not be bent or broken, remove the two Phillips head (six socket head) screws that hold the lower hinge to the inner panel. If the screws are rusted, flush them with an impact driver.
3. With the door supported, remove the two Phillips head (six socket head) screws from the upper hinge and remove the door together with its hinges.

To install:

1. Insert the rubber weatherstrip around the door if it is cracked or deformed, replace it.

NOTE

Before replacing a weatherstrip, remove all the old adhesive with solvent. Install the new weatherstrip with new adhesive.

2. If a new door is being installed, remove the lock striker plate from the lock pillar.

3. If the original door is being installed, mount the hinges with reference to the marks you made before removing the door. If a new door is being installed, do not forget to install the hinge mounting.

NOTE

If the hinges are screwed in movable threaded plates, this makes it possible to shift the position of the door in its opening for alignment purposes.

4. To align the new door, position the door in the door opening so that it contacts the weatherstrip evenly all around and the door Frame molding is in line with the trim molding on the side of the body.

5. After the door is aligned, tighten the hinge mounting screws. See Phillips head screws firmly with an impact driver.

6. Attach the door check stop to its bracket with the pin and circlip.

7. Install the lock striker plate and adjust it as described in 5.2 Adjusting Door Striker Plate.

5.2 Adjusting Door Striker Plate

(All doors and lids)

After installing a replacement door, adjust the striker plate so that the rear edge of the door aligns with the body. The striker plate should also be adjusted if the door moves or requires excessive force to close and lock. A door rattle that persists even after you have made all possible adjustments indicates a worn rubber wedge. You can correct the condition either by installing a 0.05-mm (0.002 in) shim between the edge of the door and the striker plate, or by replacing the rubber wedge. The last three steps in the adjustment procedure will tell you whether such adjustment or replacement is necessary.

To adjust:

1. Take out the two large screws and remove the striker plate. Check the door alignment and, if necessary, correct it by moving the hinges as described in 5.1 Removing and Installing Front Door.
3. If you can move the striker plate vertically as indicated in Fig. 5-3, the rubber wedge is worn. Either add shims between the rubber wedge and the striker plate or replace the rubber wedge. If lack of lubrication has caused the pin on the striker plate to wear, replace the entire striker plate.

4. After correcting any excessive wedge play, correct any misalignment between the door and rear body. To do this, install the striker plate in its centered position on the lock pin.

5. Close the door. Then pull if the door aligns with the rear body. If necessary, adjust the striker plate as indicated in Fig. 5-8.

NOTE
To install shims, remove the two Phillips head screws on the angular part of the striker plate. Insert the shims as shown in Fig. 5-4, then reassemble.

NOTE

To correct misalignment between the door and front body, a lack of lubrication in the gap between the door and body, adjust the hinges and/or the striker plate. Only misalignment (vertical or horizontal) between the door and rear body should be corrected by adjusting the striker plate.
8. After aligning the door, grasp the door handle and feel for play between the lock and the striker plate. If there is play or the door will not latch, rotate the striker plate as indicated in Fig. 5-6. If the door is hard to close or if the handle works stiffly, rotate the striker plate in the opposite direction.

Fig. 5-6. Striker plate turned from vertical as indicated by arrows. The arrows show the direction of rotation. The plate at the center of the striker plate is about which the plate rotates.

NOTE
If the striker plate has been set too high, the door will be hard to open with the clear button and will drop slightly as it swings open. If the plate is set too low, the door will spring out of its locked position when slammed or forcibly engaged in the secondary latch position.

5.3 Removing and Installing Front Door Trim Panel

Only the air duct installed on new vehicles since April 1977 (beginning with Chassis No. 2222397037) is available as a replacement part. If the late duct must be installed on an earlier model, the trim panel must be re-worked as indicated in Fig. 5-2. Replacement trim panels already have the correct holes for the new air duct.

To remove trim panel:

1. Remove the screws indicated in Fig. 5-8. Then remove the two similar screws at the opposite end of the air duct.

Fig. 5-8. Screws indicated in dotted line. The rubber seal has been removed to facilitate access to the screws.

2. Remove the two screws that hold the door pull handle, then remove the pull handle.

3. Pry the plastic trim off the window crank. Remove the Phillips head screw that locks the crank on the window lifter shaft and remove the crank and the escutcheon.

NOTE
This screw is held by Locite® and requires a properly fitting Phillips screwdriver to snap it free.
4. Pry the inner panel out of the door release lever assembly. Then remove the screw indicated in Fig. 5-9.

5. Using a wooden wedge, pry off the trim panel at the door.

6. Remove the trim panel. On some vehicles, there is a hook that engages a hole in the door (Fig. 5-10). When removing the trim panel, pull it away slightly, then lift the panel to unhook it.

7. If necessary, pull the plastic shield off the inner door panel and pry out the seats for the trim panel clips.

8. If necessary, the air duct and the trim panel can be dismounted from the trim panel by removing the screws.

5.4 Removing and Installing Door Check

If any part of the door check is faulty, the whole unit must be replaced. Individual components are not supplied. However, replacement pins, circlips, and socket head screws are available.

To replace the door check, remove the circlip and take out the check strap pin. Remove the door trim panel as described in 5.3 Removing and Installing Front Door Trim Panel. Then remove the socket head screws indicated in Fig. 5-12. Installation is the reverse of removal. Lightly lubricate the check strap with multipurpose grease and the various parts with engine oil.
5.5 Removing and Installing Door Handle

To remove the door handle, first remove the trim panel as described in 5.3 Removing and Installing Front Door Trim Panel. Partially remove the plastic sheet from the door inner panel. Then, using a 5mm Allen key, remove the two socket head screws indicated in Fig. 5-13.

![Image of door handle being removed](image1)

Fig. 5-13. Socket head screw (arrows) being removed.

When installing the door handle, clean the lock and the door release trigger, then apply lock and lock lubricant. Make sure the rubber gaskets between the handle and outer door panel are in good condition and that they seal properly when you mount the door handle on the door.

5.6 Removing and Installing Window Rear Guide Channel and Run Channel

The window rear guide channel is held at the top by a retaining clip and at the bottom by the bolt indicated in Fig. 5-14.

![Image of window rear guide channel](image2)

Fig. 5-14. Door panel retains guide channel.

Though the rear guide channel seldom requires replacement, it is necessary to remove it for access to the drive lock. To remove the guide channel, take out the bolt and pull the guide channel downward.

Before installing, make sure that the retaining clip is tight. Detach the run channel slightly near the window slot in order to see that the guide channel engages the clip properly. The run channel must be knocked into the clip with a blunt wedge of wood or plastic and not with a sharp tool such as a screwdriver.

The run channel should be replaced if it is worn. The rear run channel is held in the window slot with hardened steel clips. The front run channel is simply pressed into the guide channel. The window will operate stiffly after a new run channel has been installed. To correct this, dust the run channel with talcum powder.

5.7 Removing and Installing Front Door Lock, Release Lever, and Pull Rod

The lock release lever and the pull rod must be removed before you can remove the door lock mechanism.

To remove release lever and pull rod:

1. Remove the door trim panel as described in 5.3 Removing and Installing Front Door Trim Panel. Then remove the two bolts indicated in Fig. 5-15.

![Image of window interior showing lock release lever](image3)

Fig. 5-15. Bolt locations that hold lock release lever.

2. Swing the release lever downward at the front and unhook it from the pull rod. On 1969 through 1973 models, also unhook the rod for the locking lever.
3. Working through the opening in the door inner panel, remove the spring clip illustrated in Fig. 5-16. Then unhook the rod from the door lock.

Fig. 5-16: Location of rod on door lock.

Installation is the reverse of removal. Place the rubber packing on the pull rod before you install the lock release lever and do not forget the washers for the screws that hold the release lever on the door. After the release lever has been installed, check the security of the anti-rattle ball on the pull rod. If necessary, move the lock to the correct position and reglue it.

Check to see that the lock operates properly before installing the trim panel. If you install a new pull rod, it is often necessary to correct the length of the rod by bending it. This can be done with a pair of pliers or the bending tool shown in Fig. 5-17.

Fig. 5-17: Correcting the length of the pull rod.

The door lock (Fig. 5-18) can only be removed after taking off the door handle and the rear guide channel as described in the preceding paragraphs and then removing the lock release lever and pull rod(s). As just described, on 1988 and on 1989 and later models, you must also unscrew the locking nuts at the rear of the window. Remove the three Phillips screws, place the latch in its vertical position, then take the lock nut downward complete with its plastic cover.

Fig. 5-18: Door lock assembly from the door.

Installation is the reverse of removal. Check the lock and the plastic cover. If the lock is worn or the cover does not fit properly, replace the faulty part. Prior to installation, thoroughly lubricate all moving parts of the lock with door and lock lubricant. Check the operation of the lock after you have installed the pull rod(s) and lock release lever.

5.8 Removing and Installing Window Lifter and Door Window Glass

The door window glass can only be removed after you have removed the window lifter mechanism. The window lifter is a crank-operated flexible cable that is carried inside curved tubes. The window lifter is attached to the door panel at three points.

To remove lifter and glass:

1. Remove the door trim panel as described in 5.8 Removing and Installing Front Door Trim Panel

2. Remove the plastic sheet that is beneath the door trim panel
3. Remove the bolt indicated in Fig. 5-19.

4. Lower the window. Then remove the two bolts indicated in Fig. 5-20 and disconnect the window lifter cable bracket from the window lifter channel.

5. Working near the bottom of the door inner panel, disengage the plastic cable guide tube from the tab on the door inner panel.

NOTE:
To disengage the plastic guide tube, use a screwdriver at the point indicated in Fig. 5-21 to slightly bend the tab away from the plastic guide tube. Then move the plastic guide tube sideways to disengage it.

6. Remove the two bolts from the cable drive gear. (The bolts are located on either side of the shaft to which the window lifter crank attaches.)

7. Remove the four bolts indicated in Fig. 5-22.

8. Press the window front guide channel forward off its bracket. Then, through the gap thus formed, pull the window lifter assembly downward and out of the door.

9. If necessary, slide the door window together with its lifter channel downward and out through the same opening.

10. If the glass must be replaced, knock the lifter channel off using a rubber hammer and a wooden or plastic block. Inspect the rubber in the lifter channel. If it is in poor condition, it too should be replaced.
11. When installing new glass in the lifter channel, the dimension indicated in Fig. 5-13 must be the same on both sides of the glass.

To install:

1. Check to see that the lifter mechanism works easily.
 If necessary, lubricate the spiral cable with molybednum grease. Replacement cables are available and can be installed as described under the next heading. However, if other parts of the lifter are worn or damaged, replace the lifter as a unit.

2. To prevent rattle, make sure that the plastic trim strips at the top of the window lifter tubes are fixed firmly in position.

 NOTE —
 If the cable rattle is in the metal guide tube, carefully remove the guide tube at the approximate point.

3. If removed earlier, install the window glass together with the lifter channel.

4. Press the window front guide channel off its bracket for clearance, then insert the window lifter mechanism through the gap thus formed.

5. Using the bolts removed earlier, attach the window lifter and the front guide channel. Make sure that you install the brass washers with their convex surface upward.

6. Engage the plastic guide tube in the metal tab on the door inner panel. Then bend the tab around the guide tube and out into the slot in the panel.

7. Put the window down and loosely attach the cable bracket to the lifter channel. To center the bracket on the lifter channel, temporarily install the crank and raise and lower the window several times. Then tighten the bolts that hold the bracket on the lifter channel.

8. Assemble the remaining parts of the door.

 Replacing Window Lifter Cable

 Replacement cables for the door window lifter have recently become available. In replacing the cable, the window winder mechanism need not be removed completely from the door. However, it must be unbolted as described in the procedure just given so that the window lifter mechanism can be lifted inside the door. To hold the window fully up while you are changing the cable, insert a punch or screwdriver through one of the openings in the door inner panel.

 Push the cable down (the shaft to which the crank is attached) out of the door inner panel. Then tilt and lower the window lifter assembly until the cable bracket hangs below the bottom edge of the door and the cable drive is accessible through the large opening in the door inner panel. To remove the old cable, temporarily install the crank and wind the cable out as far as possible. Bend up the sheet metal tabs on the guide tube at the point where the cable emerges from the guide tube’s lower end. Then pull the old cable out of the guide tube.

 Lubricate the new cable with molybdenum grease and insert it into the guide tube until it is engaged by the cable drive. Use the window lifter crank to fully pull in the cable. Then bend down the sheet metal tabs on the end of the guide tube. The remainder of installation is the reverse of removal.

5.9 Removing and Installing Vent Wing and Vent Wing Frame

 The vent wing and frame should be removed from the door before attempting to remove the vent wing from the frame.

To remove:

1. Remove the door trim panel as described in 5.3 Removing and Installing Front Door Trim Panel.

2. Remove the plastic sheet that is under the door trim panel.

3. Working through the openings in the upper part of the door inner panel (Fig. 5-24), remove the one bolt that holds the front guide channel and the one Bolt that holds the rear guide channel. Then push the door window fully down.

 NOTE —
 The window must be up for access to the bolts. If you cannot push the door window down after you have removed the bolts, temporarily install the window winder crank and lower the window in the normal way.
4. Pull the rear run channel out of its slot at the point adjacent to the top of the front guide channel (Fig 5-24). Then remove the Phillips head screw that holds the top of the front guide channel.

5. Pull out the window slot weatherstrip at the point adjacent to the front guide channel (Fig 5-26).

6. Pull the vent wing together with its frame toward the door edge toward the rear edge of the door.

7. Tilt the top part of the vent wing frame toward the middle of the vehicle. Then, being careful not to damage the paint in the window slot, lift the vent wing together with its frame out of the door.

8. To remove the vent wing from its frame, grind off the bottom of the rivet indicated in Fig. 5-27. Then, using a punch, drive the rivet out upward.

9. Loosen the clamp screw. Tilt the vent wing outward, then pull the spindle on its lower edge up and out of the clamp in the frame.

10. To install the vent wing in the frame, insert the vent wing in the upper slot and locate the spindle in the clamp on the frame.
11. Align the upper bracket on the vent wing with the bracket on the frame. Then, making sure that the washers are installed, install a new rivet as shown in Fig. 5-20.

12. Adjust the opening-closing friction of the vent wing by turning the clamp screw indicated in Fig. 5-29.

NOTE — This screw is also accessible with the vent wing and its frame removed from the door. If the vent wing does not stay open, or requires excessive force to open and close, remove the door rear panel, insert a screwdriver through the opening in the door inner panel and adjust the screw.

13. Using the reverse of the removal procedures, insert the vent wing and frame in the door. If necessary, adjust its position as described in the following procedure before installing the remainder of the door parts.

To adjust vent wing:

1. Lightly coat the vent wing weatherstrip with glycerine, talcum powder, or silicon spray. Then open and close it to check for jamming.

2. If the vent wing jams at side A, as shown in Fig. 5-30, pull the lower weatherstrip out of the vent wing frame as far as the pivot point. Then place a plastic or wooden wedge on the exposed frame. Using a hammer, lightly tap the frame deeper into the window slot.

3. If the vent wing jams at side B, as shown in Fig. 5-30, fully open the window. Loosen the bolt for the front guide channel and pull the vent wing frame and the front guide channel slightly to the rear. Then tighten the bolt.

NOTE — It may be necessary after making the initial adjustment to adjust the rear guide channel slightly to the rear. To do this, loosen the bolt at the rear of the channel.

4. If the vent wing glass is not parallel with the front window frame at side C, as illustrated in Fig. 5-30 open the vent wing to 90°. Then carefully align the front guide channel with the door window glass. If the vent wing still is not parallel along side C, slightly bend the upper hinge brackets, as necessary.
5.10 Removing and Installing
Sliding Door Outside Runner Cover

The outside runner cover (Fig. 5-31) must be removed before you can remove the sliding door.

1. Remove the three Phillips head screws that hold the runner cover in place. They are shown in Fig. 5-32 and Fig. 5-33.

2. Fully open the sliding door.

3. Loosen the Phillips head screw on the retaining strip (Fig. 5-34) by about 15 turns.

4. Place a punch against the head of the Phillips head screw. Then, using a hammer tap the punch sharply to drive the retaining strip toward the rear of the body.

5. Starting at the rear of the sliding door lift the outside runner cover up and out of the retaining strip.

6. After lifting off the cover, fully remove the Phillips head screws from the ends of the retaining strip and take the retaining strip off the body.
To Install:

1. Lockely install the retaining strip. Place the cover into the gap between the body and the retaining strip from above, then insert the beading.

NOTE

Place a small amount of plastic sealing compound (58500-24510) between the retaining strip and the body to maintain a gap while the cover and beading are being installed.

2. Install the two Phillips head screws that screw in from below.

3. By turning the Phillips head screw in the front end of the retaining strip, tension the retaining strip while making sure that the beading is correctly positioned.

4. Secure the cover at the lock pillar and with the remaining Phillips head screw. On vehicles manufactured after September 1967, install the nut and bolt from inside the passenger compartment.

5.11 Removing and Installing Sliding Door

Before you can remove the sliding door, you must remove the outside runner cover as described in 5.10 Removing and Installing Sliding Door Outside Runner Cover.

To Remove Door:

1. Remove the outside runner cover. Then push the door far enough to the rear so that the guide pin on the hinge link can be lifted sideways out of the recess in the center runner. See Fig. 5-36.

![Fig. 5-36.](image)

2. Push the door fully to the rear and lift it until the upper roller can be lifted out of the top runner (Fig. 5-26).

![Fig. 5-26.](image)

To Install:

1. Inspect the runners and, if necessary, straighten them. Check the guide and support rollers on the door. Replace damaged rollers. Lubricate the rollers with multipurpose grease if they turn stiffly.

2. Inspect the rubber weatherstrip around the door opening in the body. If necessary, remove the old weatherstrip, clean away all old adhesive with solvent, then use the cement to glue a new weatherstrip into place.

3. Insert the door into the bottom runner and then into the top runner.

4. Push the door forward until the roller and guides can be inserted in the break in the center runner.
5.12 Adjusting Sliding Door

The sliding door is properly adjusted if the gap between the door and the door opening is even all around. The trim or waistline on the door must align with the trim or waistline on the body and the door surface must be flush with the surface of the body.

To adjust:

1. If the door is not in line at the bottom, adjust the lower roller. To do this, loosen the Phillips head screw and the two socket head screws that hold the lower roller bracket. Then insert or remove shims as indicated in Fig. 5-38.

2. If the door is not flush with the body at the top, loosen the nut on the top roller shaft. Then adjust the roller as indicated in Fig. 5-39.

3. To prevent excessive vertical door movement, loosen the three Phillips head screws that hold the top roller bracket. Then raise the bracket until the clearance between the roller and runner is as small as possible.

4. To adjust the door gap to a uniform width, close the door. Then loosen the four bolts on the hinge housing and adjust the angle of the hinge link.

5. To check for excessive latch play, press the door firmly near the hinge link. If there is any detectable play, adjust the striker plate (Fig. 5-40).

Fig. 5-38. Lower roller adjustment. The lower bracket can be loosened horizontally and vertically as needed for the double-groove runner. Shims are inserted at the front indicated by the blue handcrew.

Fig. 5-39. Top roller adjustment. Position the roller in the bracket as needed to allow clearance for the door with the body.

5-40. Striker plate adjustment. If excessive play is present, the striker plate can be adjusted by the blue handcrew until all play is removed from the door.

5-41. Door bracket adjustment. Bolt position must be aligned as indicated by the blue handcrew.
5.14 Removing and Installing
Remote Control Lock and Center Lock

The door must be removed as described in 5.11 Removing and Installing Sliding Door. Remove the retainer as described in 5.13 Removing and Installing Sliding Door Retainer. Then, using a wooden wedge, carefully pry off the door trim panel.

To remove remote control lock:

1. On 1968 through 1972 models, loosen the lock nuts on the connecting rods. Then unscrew the connecting rod sleeves from the threaded rods on the lock. Remove the screws indicated in Fig. 5-44.

5.13 Removing and Installing Sliding Door Retainer

To remove the retainer, remove the three Phillips head screws that hold it on the door panel. Then push the connecting rod off the pin on the door retaining catch and withdraw the retainer as shown in Fig. 5-43. Following installation, adjust the retainer as described in 5.12 Adjusting Sliding Door.

NOTE

1973 and later models have the lock off the connecting rod. See Figs. 5-45.
2. On 1971 and later models, remove the nut that holds the cable eye on the lock. Loosen the cable locknut and screw the cable adjuster inward. Disconnect the cable from the remote control lock. Pull the cable adjuster out of the opening in the remote control lock. Disconnect the connector and lock as on earlier models. Then remove the screws indicated in Fig. 5-48.

![Fig. 5-48. Lock removal (from 1971). Disconnect cable and lock, then remove the screws.](image)

3. Pull the remote control lock down until its upper control rod is out of the door inner panel, then remove the lock. If necessary, the remote control lock can be disassembled as shown in Fig. 5-47 or Fig. 5-48. The components shown are those available as replacement parts.

![Fig. 5-47. Components of remote control lock.](image)

To remove castle lock:

1. Remove the remote control lock. Then remove the Phillips head screws indicated in Fig. 5-49.
2. Remove the center lock from the door. On 1971 and later models, pull the lock out to the side so that the cable is withdrawn from the rubber guide on the door.

3. If necessary, the connecting rod(s) and cable can be removed from the center lock by prying off all the E-clips as indicated in Fig. 5-58.

5.15 Adjusting Remote Control Lock and Center Lock

If the door cannot be opened and closed or locked properly after varying out the adjustments described in 5.12 Adjusting Sliding Door, the adjustment of the connecting rods should be checked.

The procedure for adjusting 1965 through 1970 locks is slightly different from the procedure for adjusting 1971 and later locks. The two procedures are covered separately.

To adjust locks (through 1970):

1. Secure the center lock mechanism with two 1-mm screws as shown in Fig. 5-52 or use suitable punches or nails for the same purpose. Screws, however, can be threaded into the operating levers.

2. Similarly secure the remote control lock by installing a 4-mm screw or other suitable object through the lock housing and into the lower pull rod.

3. Install the connecting rods on the threaded ends of the remote control lock pull rods. Turn the adjusting sleeves until the connecting rods are just barely tensioned, then tighten the locknuts. Remove the d-nut screws from the locks.

Check the lock operation. Owing to overlapping tolerances, it may be found that the door locking mechanism does not work satisfactorily despite careful adjustment. In such cases, shortening or lengthening the upper and lower connecting rods will correct the problem. To open the door, it should be necessary to move the outer door handle at least 40 mm (1/2 in.)

To prevent rattles, make sure that the foam rubber pad at the center of the connecting rods is securely glued to the door inner panel.
To adjust latches:

1. Use the center latch mechanism with a 4-mm screw as shown in Fig. 5-53, or use suitable punches or nails for the same purpose. A nut or hex bolt can be inserted into the operating lever.

2. Install the cable eye on the operating lever and secure it with the circlip. Then install the cable adjuster in the notch in the remote control lock.

3. To adjust the cable, hand turn the adjusting nut until it is taut. Tighten the locknut.

4. To adjust the connecting rod, pull the rod lightly. Screw the threaded sleeve as far as the stop on the lock pull rod. Tighten the locknut.

5. Remove the 4-mm screw from the center latch.

Check the lock operation. Owing to overlapping tolerances, it may be found that the door locking mechanism does not work satisfactorily despite careful adjustment. In such cases, shortening or lengthening the connecting rod and cable will correct the problem. To open the door, it should be necessary to move the outer door handle at least 40 mm (1.6 in). However, it should not be necessary to move the handle more than 50 mm (2 in.)

To prevent rattles, make sure that the front rubber blisters and the plastic clips are positioned as shown in Fig. 5-54. They should also be properly glued to the door panels.

5.14 Removing and Installing Sliding Door Retainer Rear Bracket

The sliding door retainer rear bracket is located at the extreme rear of the center runner. The rear bracket is the part that the retainer slides onto when the door is fully opened.

For access, you must remove the sliding door as described in 5.11 Removing and Installing Sliding Door. To remove the retainer rear bracket, partially detach the rear trim panel. Then remove the Phillips head screw as indicated in Fig. 5-55.

Fig. 5-55. Screw removal that holds the retainer rear bracket and move the passenger compartment.
Working outside the vehicle, remove the two bolts and take off the bracket. The bracket, bolts, and replaceable components of the bracket are shown in Fig. 5-56.

![Figure 5-56: Sliding door bracket with components](image)

1. Pull out the slide plate
2. Replace hub

Fig. 5-56. Sliding door bracket and components

Installation is the reverse of removal. Inspect the spring and rubber buffer. Replace worn or damaged parts. The retainer ring bracket should be carefully aligned on the panel. After installing the sliding door, it may be necessary to adjust the door retainer as described in 5.12 Adjusting Sliding Door.

5.17 Removing and Installing Hinge

The components of the hinge are shown in Fig. 5-57. Most of them are available as individual replacement parts.

![Figure 5-57: Components of sliding door hinge](image)

- Spring
- Hinge link
- Bolt nut
- Lock washer
- Roller bracket
- Luggage bear
- Plate and bearing
- Plate lock device
- Bearing washer
- Ihn link
- Nut
- Cylinder
- Pin
- Connecting rod
- Spring washer

Fig. 5-57. Components of sliding door hinge

Before you install the hinge, apply engine oil to the pivot points for the hinge link. There are grooves in the pivot so that oil can easily be introduced between the pivot and the housing. Also on the washers and other parts of the pivot points, but do not oil the roller and bearing or the return spring. Lightly coat the return spring with multi-purpose grease. Apply the same lubricant to the roller and bearing, working as much grease as possible into the bearing flax.

Installation is the reverse of removal. Following installation, adjust the door as described in 5.12 Adjusting Sliding Door.
5.18 Removing and Installing
Sliding Door Vent Wing

The vent wing pivot spindles are mounted in a stamped steel frame. If the vent wing opens and closes too easily, or if it is difficult to move, the clamp for the lower pivot should be adjusted. To do this, raise the weatherstrip as shown in Fig. 5-59. Then turn the Phillips-head adjusting screw until the correct degree of friction is obtained.

To remove vent wing:

1. Bend up the two metal tabs (Fig. 5-60) on the vent wing frame. With the vent wing installed, these will be found in the front face of the door.

Fig. 5-59. Vent wing adjusting screw (arrow)

Fig. 5-60. Metal tabs that hold the vent wing frame to the sliding door

2. Hand-press the vent wing, vent wing frame, and weatherstrip out of the window opening.

3. If necessary, remove the Phillips head adjusting screw (Fig. 5-61) from the pivot spindle clamp. Then take the vent wing out of the frame.

CAUTION—
Proceed carefully so that you do not accidentally damage the panel on the frame.

Fig. 5-61. Screw that must be removed before you can take the vent wing out of the frame

To install:

1. If the vent wing was removed from the vent wing frame, place a glass installer's cord in the outer lip of the weatherstrip. Then install the vent wing in its frame while pulling out the cord.

2. Check to see that the weatherstrip is properly positioned on the frame and against the vent wing. Then install the adjusting screw and tighten it until the correct degree of pivot friction is obtained.

3. Install the vent wing and frame from the outside of the sliding door. Starting at the top, insert the frame behind the sealing flange in the window opening.

NOTE—Installation is easier if you first remove the large window from the sliding door.

4. Pull the weatherstrip lip over the flange with a glass installer's cord, making sure that the weatherstrip fits properly all around.

5. To secure the frame and vent wing in the door, bend down the two metal tabs that are on the frame.
6. SEATS AND INTERIOR TRIM

The seats in the rear passenger compartment can be removed by unbolting their retainers from the floor. To remove the driver's seat, fully lift the adjusting lever, then slide the seat forward and out of the runners. If the seat is hard to move, check the runners on the seat frame. Straighten the runners and remove burns as necessary. To remove the front passenger seat, lift the front edge of the seat until the hooks on the backrest disengage from the retainers on the partition panel. The seat is riveted to the backrest and the two parts must be removed as a unit. Lifting the front of the seat causes the backrest to slide down, thus unhooking it.

When you install the front passenger seat, first engage the seat on the two rear brackets that are welded to the floor. Then lower the front edge of the seat until the backrest hooks into the retainer. If the backrest does not engage the retainer, or if the front of the seat cannot be pushed fully down, loosen the two Phillips head screws and move the retainer loop up or down on the partition panel.

Installing and Raising Partition Panel Trim

Fig. 6-1 shows the trim panel removed. To remove the trim panel, first squeeze the handle together and pull it out (right-hand panel only). Then, using a wooden wedge, carefully pry the trim panel off the partition.

Installation is the reverse of removal. When you install the handle, squeeze it together, push it through the trim panel, then release it. Check to see that it has hooked solidly to the partition.

Once the right-hand trim panel is off, you can replace the padded strip and the seat mounting trim. However, you must also remove the front passenger seat before you can remove the Phillips head screws indicated in Fig. 6-2 and Fig. 6-3.

Fig. 6-2. Screws that hold the padded strip.

Fig. 6-3. Screws that hold the padded strip.

NOTE

After you have removed the Phillips head screws, take off the plastic trim strip that is installed between the screws and the padded strip.
To remove padded strips, drill out the rivets as shown in Fig. 6-6.

Removing and Installing Side Trim Panels

The side trim panels for the rear passenger compartment and for the luggage compartment are shown removed in Fig. 6-6 and Fig. 6-7. The passenger compartment side trim panel is attached with steel clips and is also held by the armrest and its screws. The luggage compartment side trim panel is held by Phillips head screws. The heads of the screws are covered by plastic caps.

To remove the passenger compartment side trim panel, carefully pry the plastic caps out of the holes for the armrest screws. Remove the screws and take off the armrest.

NOTE
The screws which are not easily seen after the caps have been prised off, are installed at an angle.

Using a wooden wedge, pry off the trim panel. Insert the wedge near each of the 10 steel clips, being careful not to damage the vinyl covering on the trim panel or the paint on the body.

Installation is the reverse of removal. During installation, make sure that the side trim panel is flush with the rear side trim panel.

NOTE
The rear side trim panels, located at each end of the rear seat, are also installed with steel clips. These panels can be removed and installed using a procedure similar to that just described for the side trim panel.

To remove luggage compartment side trim:

1. When removing the left-side trim panel, remove the spare wheel cover and the spare wheel. Then remove the rubber buffers for the spare wheel.
2. Detach the rear seat backrest brackets on both sides of the rear seat, then push the backrest forward.
3. Pry out the plastic caps and remove the five Phillips head screws.
4. Pull the side trim panel forward and out of the retaining channel on the rear body pillar.

Installation is the reverse of removal. Before installing the screws, make sure that the front edge of the luggage compartment side trim panel is flush with the edge of the rear passenger compartment rear side trim panel.

CAUTION
Be careful not to burr or otherwise damage the luggage compartment side trim panel as you install it in the retaining channel on the rear body pillar.
Fig. 6-6. Rear passenger side trim panel removal.

Fig. 6-7. Luggage compartment side trim panel removal.
7. CAMPMOBILE EQUIPMENT

The procedures given here apply mainly to 1968 through 1975 Campmobiles. The publisher regrets that service information on 1974 and later Campmobiles is unavailable from the vehicle's manufacturer. To determine whether a particular procedure applies to a later model Campmobile, please compare the equipment found on the vehicle with the pictures of Campmobile equipment that appear on this page and on following pages.

Removing and Installing Icebox Cabinet

The icebox cabinet is mounted against the partition behind the front passenger seat. To remove the icebox cabinet, remove the front passenger seat. Then remove the two hand nuts indicated in Fig. 7-1.

Fig. 7-1. Hand nuts removed behind front seat.

Pull the cabinet away from the partition, lift it slightly, and then lift it up to withdraw the drain hoses from the hole in the floor (Fig. 7-2).

Fig. 7-2. hoses under icebox cabinet.

Installation is the reverse of removal. Replace the rubber seal (Fig. 7-3) if it is worn or damaged.

Checking, Removing, and Installing Water Pump

If the pump fails to deliver water through the water container is full, remove the drawer from the icebox cabinet. Check to see that the hose from the water container is attached to the pump. (The pump is in the plastic housing that is integral with the base of the spigot.) If the hose is correctly connected, remove the hand nuts (shown earlier in Fig. 7-1) that hold the icebox cabinet on the partition. Check to see that the hose is connected to the water container. If the hose connections are in order, but no water is delivered, remove the two screws from the sides of the spigot housing and remove the pump as shown in Fig. 7-4 for inspection, repair, or replacement. Installation is the reverse of removal.

Fig. 7-3. Rubber seal A located rear lil of portal.

Fig. 7-4. Pump removed through hole at A.
Removing and Installing Front Bench Seat:

To remove the front bench seat (which is mounted back-to-back with the driver's seat), first lift out the seat cushion. Then take out the four bolts that hold the seat retaining plates to the floor. See Fig. 7-5.

Fig. 7-5. Two oil pump covers (removes floor vent).

Remove the two screws in the face of the electrical receptacle and pull out the receptacle cover. Remove the screw and the wires indicated in Fig. 7-6. Attach lugs to the wires as you remove them so that they can be reinstalled on the correct terminals. The seat may then be removed from the vehicle.

Installation is the reverse of removal. When installing the receptacle cover, hold the housing to keep the screws from pushing it off the inside of the seat box.

Removing and Installing Rear Bench Seat:

The rear bench seat must be removed together with the storage cabinet that is under it. But before it can be removed, you must remove the front bench seat and the folding table.

To remove rear bench seat:

1. Release the rear bench seat cushion, then lift it up and secure it with the support. (The catches that hold the cushion are inside the storage cabinet and are accessible after you open the cabinet door.)

2. Remove the nuts indicated in Fig. 7-7. Then, working under the vehicle, pull the bolts out of the floor panel, if necessary for access to the left-side bolt. Temporarily remove the heater pipe extension.

3. Remove the nuts indicated in Fig. 7-8. Then, working under the vehicle, remove the stud and plate.

Fig. 7-5, 7-6. Screws and nuts that hold cabinet housing.

Fig. 7-7. Nut and bolt that hold cabinet housing.

Fig. 7-8. Bracket on wheel housing.
d. To detach the seat brackets from the engine cover panel, remove the two Phillips-head screws and the bolt indicated in Fig. 7-9 from the right-hand bracket. Remove the two similar screws (but not bolt) from the left-hand bracket.

5. Take the seat out forward.

Removing and Installing Linen/Clothes Closet

You must remove the icebox cabinet, the storage shelf, the front bench seat, and the rear bench seat before you can remove the closet. To remove the closet, take out the two Phillips-head screws indicated in Fig. 7-11.

Installation is the reverse of removal. The stud plate for the bracket on the wheel housing is shown in Fig. 7-10. Use new self-locking nuts during installation. Also, do not forget the rubber seal since leaks will occur if you do. If the rubber seal is worn or damaged, replace it. Following installation, check to see that seat cushion hinges work properly.

Fig. 7-10. Stud plate assembly. A. The rubber seal is B.

After removing the back rail, just inside the linen closet door (Fig. 7-12), you can swing the closet sideways, pull it forward, and lift it out of the car.
Installation is the reverse of removal. Install the two Philips head screws at the front before you secure the rear of the closet. Insert the rear bracket through the hole in the cabinet and engage it over the edge of the rear side panel as shown in Fig. 7-13. Install the hand nut if necessary. Tighten the locknut against the outside of the closet after the hand nut is installed.

Fig. 7-13. Position of rear brace (arrow) on closet and on body rear side panel. The bracket can be moved to suit your situation for access.

Eliminating Closet Door Rattle

If the closet doors rattle, use trim cement to stick small pieces of foam rubber on the door edges as shown in Fig. 7-14. If the rattle persists, move the latch plate slightly inward (Fig. 7-16).

Fig. 7-14. Foam rubber strips (arrow) applied to door

Removing and Installing Storage Shelf

The storage shelf, located at the rear of the Campmobile, must be removed before you can remove the full-size linen closet. It is helpful to have someone support the storage shelf as it is partially unbolted, freeing you to complete the removal procedures. If you attempt the job by yourself, be careful that the shelf does not fall or shift its position in such a way that it damages the interior trim.

To remove shelf:

1. Remove the two screws indicated in Fig. 7-16.
2. Remove the nut, washer, and carriage bolt at the right-hand side of the storage shelf. Push the bolt back into the interior clothes closet (Fig. 7-17).

3. Remove the two screws with press button retainers (Fig. 7-18).

4. Using a screwdriver at the left-hand side of the storage shelf, pry the bracket down toward the side window. (This is the bracket you removed the screws from in Step 1.) Then carefully lift the storage shelf out downward.

Installation is the reverse of removal. Again pry down the left-side bracket while you lift the storage shelf into position.

Removing and Installing Plywood Roof Trim

Though it makes the job easier, it is not absolutely necessary to remove the side roof trim panel over the sliding door before you remove the front roof trim. However, both side trim panels must be removed before you can remove the rear roof trim.

To remove the side roof trim panel above the sliding door, pull the panel out of its retaining and locating channels as shown in Fig. 7-19. Then take the locating channels off the roof trim. Installation is the reverse of removal.

The side roof trim panel above the side window is shown in Fig. 7-20. To remove the panel, first remove the interior lamp and disconnect it from its wire. To remove the panel, pull it out of the retaining and locating channels. Then take the locating channels off the roof trim. Installation is the reverse of removal.

Fig. 7-17. Bolt at right-hand side of storage shelf

Fig. 7-18. Three of the five shown (arrows) that hold shelf to the roof frame. Luggage compartment lid must be raised for access to the screws.

Fig. 7-19. Panel above sliding door being removed. Locating channels at A, retaining channel at B, and roof trim panel at C.

Fig. 7-20. Panel above side window and welded part. Roof trim panel at A, locating channel at B, and retaining channel at C.
To remove front roof trim:

1. Remove the roof side trim panel over the side window.

2. Slightly loosen the four Phillips head screws that hold the retaining plate for the folding cot. Then fully remove the two self-locking nuts and screws.

3. Pull the beading (Fig. 7-21) off the roof frame until the beading no longer contacts the front roof panel.

Fig. 7-21. Sounds with self-locking nuts A trim must be removed before you can remove beading A.

4. Remove the sun visors together with their retainers, the rear view mirror, and the interior lamp. Then remove the Phillips head screws indicated in Fig. 7-22.

Fig. 7-22. Sun visors A, retnere B rear view mirror C and Phillips head screws D.

5. Pull down the roof from trim panel in the center as shown in Fig. 7-23. Press it out of the retaining channel on one side or the other, then pull the panel out of the retaining channel on the opposite side and remove the panel.

Fig. 7-23. Roof trim panel being removed.

Installation is the reverse of removal. Install the trim panel in one retaining channel, bend the panel down in the center, then locate it in the other retaining channel. Lift the plate for the folding cot while you install the beading on the edge of the roof frame. Use new self-locking nuts for the cot screws.

To remove rear roof trim panels:

1. Remove the roof side trim panels over the sliding door and the side window. Then remove the storage shelf as previously described. To remove the luggage net on vehicles that are so equipped.

2. Pull the beading off the front of the roof frame until it no longer contacts the trim panel. Then remove the screws and self-locking nuts indicated in Fig. 7-24.

Fig. 7-24. Pulling cot screws with self-locking nuts (arrows).
3. Remove the three Phillips head screws that are near the rear edge of the trim panel. Also, remove the securing bracket below the screws (Fig. 7-25).

![Image of Phillips head screws and securing bracket](image)

Fig. 7-25. Securing bracket (arrow). Phillips head screws in trim panel are just above the bracket.

4. Pull the panel down in the center, then carefully lift its edges out of the retaining channels. Remove the trim panel from the vehicle.

5. If necessary, raise the luggage compartment lid. Then remove the Phillips head screws with press-button fasteners indicated in Fig. 7-26. Then remove the end part of the rear trim.

![Image of screws being removed](image)

Fig. 7-26. Five screws with press button fasteners.

Installation is the reverse of removal. Install the trim panel in one retaining channel, bend the panel down in the center, then locate it in the other retaining channel. Use new self-locking nuts on the screws for the filling and retaining plate.

Removing and Installing Left (Jalousie) Window

To remove the jalousie side window, first remove the curtain and curtain rail by lifting out the screws. Push the mosquito net screen up until it is 5 mm (1/6 in.), then pull the screen down and out of the frame. Pull off the rubber weatherstrip as shown in Fig. 7-27.

![Image of window being removed](image)

Fig. 7-27. Rubber weatherstrip partially removed.

Remove the 15 Phillips head screws around the window frame (Fig. 7-28). Then carefully hand-press the jalousie window out of its opening in the body.

![Image of window being removed](image)

Fig. 7-28. Four 15 screws around window that hold the jalousie window in body.

Installation is the reverse of removal. Make sure that the rubber weatherstrip on the window's outer seal is properly positioned, then install the window and frame upper edge first. Install the four screws indicated in Fig. 7-28, and then the remaining 11 screws. When installing the inner rubber seal, do so with the wide part of the seal along the bottom of the window.
7.1 Front Hinged Roof

The front hinged roof, available on Camperbodies, provides space for a folding cot. A Campermobile with the front hinged roof raised is shown in Fig. 7-29.

Fig. 7-29. Front hinged roof in raised position

Removing and Installing Front Hinged Roof

The front hinged roof must be in its raised position before you can remove it.

To remove:

1. Remove the screws and detach the hinge that holds the bellows on the roof panel (Fig. 7-30).

Fig. 7-30. Screws that hold the bellows on the hinge of the roof panel

2. Remove the hinge mounting bolts indicated in Fig. 7-31. Have someone hold the roof firmly while you remove the bolts on the opposite side.

Fig. 7-31. Bolts (arrows) that hold hinge on roof panel. Be careful not to let the unbolted hinge fall out when you remove the roof panel

3. Remove the two Phillips head screws indicated in Fig. 7-32 from both roof support retaining plates. Then, while holding the hinges and supports in place, avoid damaging the paint, carefully lift off the roof.

Fig. 7-32. Screws (arrows) that hold the roof supports

To install:

1. Place the roof in position and loosely install the hinge mounting bolts.

2. Carefully align the roof with the holes in the luggage pane at the rear part of the vehicle roof. Then tighten the hinge mounting bolts.

3. Using the Phillips head screws, install both roof supports on the roof frame.

4. Carefully lower the roof.
5. Check the position of the rear rubber seal at the points indicated in Fig. 7-33. If necessary, reposition the hinges so that the seal makes proper contact all along the rear roof edge.

6. Using thin cement, glue the plastic molding to the vehicle roof. Then position the bevel links on the strip.

7. Using the arrows, install the bellows-securing strips in the following order: front, rear, and sides.

Removing and Installing Roof Seal

To remove the rubber seal, raise the hinged roof, then pull off the seal as shown in Fig. 7-34.

Fig. 7-34. Seal being removed from hinged roof.

The cross section of the rear seal is different from the cross section of the seals used at the front and sides. This difference is shown in Fig. 7-35.

Coat the new seal with glazing or aircraft spray. Then hand-press the seal over the lip on the hinged roof. Fully drive the seal over the lip as shown in Fig. 7-36.

NOTE

If the seal slips, loosely rotate them to get better alignment and reposition the components. Pull the seal off at all approximate points while doing this.

Fig. 7-36. A wooden block and rubber mallet are used to drive the seal fully into place.

Removing and Installing Bellows

Though the front hinged roof is shown removed in the illustrations, you do not need to remove it in replacing the bellows. If the existing bellows is not to be reinstalled, cut the material off just above the vehicle roof so that the screws in the securing strips are in line with the accessible area.

To remove the bellows, remove the screws and securing strips around the lower edge of the bellows. Pull out the staples that hold the plastic strips around the upper edge of the bellows and remove the plastic strips as shown in Fig. 7-37. Then remove the additional staples.
that hold the bellows to the wooden frame and remove the bellows from the front hinged roof.

Using the screws, install the bellows-securing strips in the following order: front, rear, and sides.

Removing and Installing Hinges and Roof Supports

The hinged roof supports are held on the vehicle roof by two Phillips head screws, as shown earlier in the procedures for removing and installing the front hinged roof. A single bolt with a self-locking nut holds each support on its top bracket. Use new self-locking nuts during installation. Install the supports first on the top and then at the bottom.

When you remove a hinge, support the unbolted side of the roof so that it does not shift and bend the hinge on the opposite side. It both hinges are being replaced, replace then one at a time.

To remove the hinga, raise the hinged roof and then remove the three bolts and the two self-locking nuts indicated in Fig. 7-33. Be careful not to scratch the paint as you remove the hinge from the vehicle.

When you install the bellows, first tack on staples to the wooden frame at the four corners. Then tack or staple the material to the wooden frame all around and staple on the plastic strips as shown in Fig. 7-38.

Installation is the reverse of removal. Use new self-locking nuts on the bolts in the hinged roof. Loosely install the three bolts that hold the hinge on the vehicle roof, then carefully close the roof. Align the hinged roof along its rear edge, then tighten the three bolts that hold the hinges in the vehicle roof.

Removing and Installing Folding Coils

You do not need to fully remove the folding coil in order to replace the canvas cover and side tubes. The removal of the canvas cover and side tubes is described following the regular removal and installation procedure.
The front hinged roof must be raised before the cat can be unfolded into its sleeping position as shown in Fig. 7-40.

Fig. 7-40. Folded out ready for use.

To remove folding cot:

1. Raise the front hinged roof, but do not unfold the cot.
2. Remove the four Phillips head screws that hold the front folding cot hinge to the vehicle roof (Fig. 7-41).
3. Remove the two screws indicated in Fig. 7-42 from the front hinge.

NOTE
Use a wrench from above to hold the self-locking nuts.

4. Remove the four Phillips head screws and two self-locking nuts indicated in Fig. 7-43. Then carefully remove the folding cot from the vehicle.

Fig. 7-41. Phillips head screws that hold the folding cot hinge to the vehicle roof.

Fig. 7-42. Screws that hold rear hinged side screws indicated by the bolt two screws are threaded into the roof. These screws indicated by the right side indicator have self-locking nuts (arrow).

Installation is the reverse of removal. Use new self-locking nuts when you install the screws that pass through the trim panels and roof pan.

To remove the folding cot tube and canopy:

1. Remove the self-locking nuts from the bolts in the front and rear hinges. This may be done with the cot installed inside the vehicle.
2. Push the bolts out of the holes in the hinge arms and connecting tube brackets (Fig. 7-44).

Remove the three Phillips head screws at the rear edge of the luggage rack (Fig. 7-46). Lift the luggage rack off the vehicle and remove the three rubber spacers so that they will not be lost.

3. Carefully lower the tubes and canvas into the vehicle interior. Then withdraw the bolts from the canvas.

Installation is the reverse of removal. Use new self-locking nuts on the bolts that hold the tubes on the hinges.

Removing and Installing Roof Luggage Rack

To remove the luggage rack first remove the four Phillips head screws from the front edge of the rack (Fig. 7-45).

8. Sliding Roof

(sun roof)

The sliding steel roof (sun roof) is optional equipment on the vehicles covered by this Manual. The trim panel cannot be removed until you have removed the sliding roof itself and have removed the left side runner.

8.1 Removing and Installing Sliding Roof

The sliding roof can be adjusted without removing it from the vehicle. If the sliding roof does not operate properly, read 8.4 Adjusting Cables and 8.5 Adjusting Sliding Roof Height before deciding whether it is necessary to remove the sliding roof.

To remove sliding roof:

1. Using the hand crank, slightly open the sliding roof.

NOTE

A gap of from 125 to 150 mm (5 or 6 in.) should be adequate.
2. Using a wooden wedge, carefully pry the front edge of the trim panel off the sliding roof panel. Work as closely as possible to each of the live clips (see Fig. B-1).

3. Push the trim panel to the rear as far as it will go.

4. Using the hand crank, close the sliding roof until it is only open about 50 mm (2 in). Then take out the four Phillips head screws with spring washers and remove the trim guide.

5. Unhook the leaf springs from the lifters. Then swing the springs inward as indicated by the arrow in Fig. B-1.

6. Pull the left and right lifters—located at the rear of each cable—out of the brackets on the roof, then turn the lifters down.

7. Taking care not to damage the seal or scratch the paint, lift the sliding roof panel out through the top of the roof opening. (The rear guides must come out through the recessed in the side runners.)

To install:

1. Insert the sliding roof panel into the roof opening, rear edge first, and engage the rear guides in the runners.

2. Slowly push the sliding roof panel to the rear while gradually lowering the front edge into position.

3. Pull the sliding panel fully forward. Install the left and right lifters—located on the ends of the cables—into the brackets on the sliding roof. Then hook the leaf springs over the lifters.

4. Using the Phillips head screws and spring washers, install the front guides.

5. Adjust the sliding roof as described in 3.4 Adjusting Cables and 3.5 Adjusting Sliding Roof Height.

6. Using the hand crank, open the sliding roof halfway.

7. Pull the trim panel forward and attach it to the sliding roof by hand-pressing in the live clips.

8.2 Removing and Installing Sliding Roof Trim Panel

The sliding roof trim panel should be removed only if the trim panel itself must be replaced or repaired.

To remove:

1. Remove the sliding roof panel as described in 8.1 Removing and Installing Sliding Roof.

2. Working through the roof opening, remove the eight Phillips head screws and the single counter-sunk screw that hold the left runner on the body. (The runners and related parts are shown in Fig. B-2.)

3. Pull the left runner and the rear retainers forward out of the bracket and lift it out through the top of the roof opening.

4. Carefully take out the trim panel—left side first—and through the top of the roof opening.
To install trim panel:

1. Inspect the trim panel frame, trim panel, and the steel clips. Replace worn or damaged parts. Dirty trim panels can be cleaned with plastic cleaner.

2. Place the trim panel in the runners. Then install the left runner.

3. Install and adjust the sliding roof panel. See 8.1 Re-moving and Installing Sliding Roof.

4. Pull the trim panel forward and attach it to the sliding roof by hand-pressing in the two clips.

8.3 Removing and Installing Runners and Cables

In removing and installing the runners, cables, and other parts shown in Fig. 8-2, be careful not to scratch the pant on the roof. To prevent rust, touch up any paint scratches that you find.

To remove:

1. Remove the sliding roof as described in 8.1 Re-moving and Installing Sliding Roof. It is not necessary to remove trim panel.

2. Remove the center guide cover. To do this, remove the three Phillips head screws and the two countersunk flat head screws.

3. Remove the upper part of the center cable channel by taking out three screws.

4. Remove the upper part of left cable channel by taking out three screws.

5. Remove the upper part of right cable channel by taking out three screws.

6. Remove the center guide spring plate.

7. To remove the left and right side runners, remove the 16 Phillips head screws and the two countersunk flat head screws. Pull each runner together with the rear retainer, forward out of the brackets, and then out through the top of the roof opening.

8. Lift out the center cable guide and the left and right cable channels.

9. Pull the cables and lifters off the runners.

To install:

1. Reversing the removal procedures, loosely install the side runners and lifters with cables in the sliding roof opening.

2. If previously removed, install the trim panel before installing the left runner.
3. Carefully align the side runners. Then tighten the screws.

CAUTION
The runner gear rollers must be tightly in mesh or cracks or improperly aligned, the side runners will shift sideways as the roof is opened and closed, thus preventing the roof from working smoothly.

4. Install the center cable guide and the left and right cable channels.

5. Position the cables as shown in Fig. 6-2.

6. Install the left, right, and center cable channel upper parts. Do not forget the center guide spring plate and the spreader bar.

7. Install the sliding roof as described in 5.1 Removing and Installing Sliding Roof; adjust the roof as described under the following two headings.

8.4 Adjusting Cables

The cables should be adjusted after removing and installing the sliding roof panel and whenever the sliding roof fails to open and close evenly at both sides.

To adjust:

1. Using the hand crank, slightly open the sliding roof.

NOTE
A gap of from 125 to 150 mm (0.49 to 0.59 in.) should be adequate.

2. Using a wooden wedge, carefully pry the front edge of the trim panel off the sliding roof panel. Work as close as possible to each of the two clips. (See 5.1 Removing and Installing Sliding Roof.)

3. Push the trim panel to the rear as far as it will go.

4. Using the hand crank, fully close the sliding roof.

5. Carefully pry the plastic cap off the hub of the hand crank. Then remove the Phillips head screw and take off the hand crank and escutcheon. (See Fig. 6-3.)

6. Loosen by approximately six turns each of the two Phillips head screws that hold the cable drive gear assembly on the roof.

7. Pull the cable drive gear assembly downward until the gear no longer engages the cable. (When disengaged, the gearshaft can easily be finger-turned.)

8. Check the position of the sliding roof in the roof opening. If necessary, hand-shift the roof until it is square with the opening.

9. Place the clips—located at the rear of each cable—in a vertical position and, if necessary, adjust the roof height as described under the following heading.

10. Finger-turn the drive gearshaft clockwise as far as it will go, then turn it counterclockwise one-half turn.

11. Hand-press the cable drive gear assembly upward until the gear engages the cables, then tighten the two Phillips head screws.

12. Install the escutcheon, hand crank, short Phillips head screw, and plastic cap.

13. To check the cable adjustment and crank position, open and close the sliding roof several times. If necessary, reposition the hand crank on the drive gearshaft so that the crank can be folded into the recess when the sliding roof is fully closed.

14. If the sliding roof does not open and close evenly on both edges, repeat the adjustment. When the adjustment is correct, pull the trim panel forward and attach it to the sliding roof by hand-pressing in the two clips.

8.5 Adjusting Sliding Roof Height

The height of the sliding roof should be adjusted after removing and installing the sliding roof panel and whenever the top of the closed sliding roof does not lie flush with the roof of the vehicle.
To adjust height:

1. Using the hand crank, slightly open the sliding roof.

 NOTE
 A gap of from 125 to 150 mm (5 or 6 in.) should be adequate.

2. Using a wooden wedge, carefully pry the front edge of the trim panel off the sliding roof panel. Work as close as possible to each of the five clips. (See 8.1 Removing and Installing Sliding Roof.)

3. Push the trim panel to the rear as far as it will go.

4. Using the hand crank, fully close the sliding roof.

5. Loosen the two Phillips head screws with spring washers in each of the two front guides (Fig. 8-4).

6. To adjust the height of the front edge of the sliding roof panel turn the adjusting screw one way or the other on each of the two front guides.

7. To adjust the height of the rear edge of the sliding roof panel, open the roof slightly. Then unhook the leaf springs from both rear lifter and swing the springs to the position shown in Fig. 8-5.

8. Loosen the nut and bolt indicated in Fig. 8-5 on both rear lifters.

9. To correct the height, move the lifter pins in their elongated holes. When the height is correct, tighten the nuts and bolts.

10. Swing the leaf springs back to their original position and hook them over the lifter.

11. Loosen the two Phillips head screws with spring washers on each rear guide. Then, by turning screw A indicated in Fig. 8-6, adjust the height of each rear guide so that it fits in the recess in the runner when the roof is being opened or closed.

12. Tighten the Phillips head screws with spring washers in each rear guide. Then check to see that the roof opens and closes evenly on both sides. If not adjust the cables as described in 8.3 Adjusting Cables.

13. Push the trim panel forward and attach 1 to the sliding roof by hand pressing in the five clips.
9. **Outside Mirror**

The outside mirror mounting has two pivots so that the mirror can be adjusted to any angle. You can remove the outside mirror as shown in Fig. 9-1. Use a 10-mm (1/2 in.) wrench to unscrew the retaining nut from the door.

![Outside Mirror Being Removed](image)

Fig. 9-1. Outside mirror being removed.

Before you install the mirror, make certain that the two pivots move freely. Their freedom of movement can be altered by tightening or loosening the mirror retaining nut at the cap out. If necessary, disassemble the mirror as shown in Fig. 9-2 so that you can clean and lubricate the pivots.

![Components of Outside Mirror](image)

Fig. 9-2. Components of outside mirror.

During assembly, use multipurpose grease to lubricate the pivot bolt and threads on the mirror, the taper inside the mirror bracket, and the coil spring. If the plastic washer or the serrated washer is damaged, replace it. Do not forget to install the plastic washer under the mirror retainer when you install the mirror on the vehicle.

10. **Heating and Ventilation**

No special instructions are necessary for the removal of many heating and ventilation components. An examination of the components will quickly reveal the local end of the screws that hold them to the vehicle body. Though there have been detail modifications to some parts of the heating and ventilation system during the model year, the basic design of its components has remained unchanged.

10.1 **Removing and Installing Fresh Air and Heating Controls**

The fresh air and heating controls are located behind the dash panel. The control knobs are projected through slots in the right-hand side of the instrument panel.

To remove controls:

1. Press out the four plastic plugs that hold the lever end pieces to the control levers. The locations of the plugs are shown in Fig. 10-1.

2. Pull the lever end pieces out through the slots in the instrument panel. Then remove the leaf springs that are also held in the levers by the plastic plugs.

![Locations of Plastic Plugs](image)

Fig. 10-1. Locations of plastic plugs. Although the illustration is removed from the car, if you cannot remove a plug after you have pulled the lever end pieces out, it may be too tight in the panel.
To disassemble the control lever assembly, remove the self-locking nuts. Then remove the lever and the friction washers from the pivot pins. Be sure to take notice of the order in which the levers and the friction washers are installed on the pins. If any friction washer is worn or damaged, replace it. During assembly, you can adjust the friction by loosening or tightening the self-locking nuts.

Installation is the reverse of removal. Following installation, make sure that the fresh air flaps are closed with the control lever in its highest position. If the flaps fail to close, or close too soon, you can adjust the linkage by installing the adjustable connecting link in a different hole in the control lever or by altering the length of the adjustable connecting link.

10.2 Removing and Installing
Fresh Air Flaps and Linkage

It is not necessary to remove the control linkage in order to remove the fresh air flaps. However, if you must remove the linkage, it is necessary to remove the air intake grille and mesh panel from the front of the vehicle so that you can disconnect the connecting rods from the fresh air flaps.

To remove:

1. Remove the six Phillips head screws that hold the air intake grille to the body. These are indicated in Fig. 10-4.

2. Remove the air intake grille and the mesh panel that is behind the grille.

3. Open the mesh air flap. Carefully pry off the spring clip that holds each connecting rod to its flap. Then disconnect the connecting rod from the flap.

Fig. 10-4. Phillips head screws (arrow) that hold air intake grille and mesh panel.

Fig. 10-3. Remove Phillips head screws that hold control linkages and mesh panel.

Fig. 10-1. Components of ventilation control linkage.
4. Remove the two screws indicated in Fig. 10-5. Then remove the fresh air flap from the vehicle.

Before you reinstall the flap(s) or the linkage, inspect the plastic bearings and replace any that are worn or damaged. Also replace worn or damaged rubber boots and replace the flap seals if they are in any way faulty.

Installation is the reverse of removal. Make sure that the rubber boots for the connecting links are installed correctly (Fig. 10-7). Following installation of all the components, check that the flaps and control levers operate smoothly. The flaps should be closed when the control levers are in their highest positions. If the flaps close too soon or fail to close, adjust the linkage by installing the adjustable connecting links in different holes in the control levers or by altering the lengths of the adjustable connecting links.

5. Working beneath the dashboard, carefully pry off the spring clips that hold the support rod and the adjustable connecting links to the relay levers. Then disengage the rods and links from the relay levers. (These parts were previously identified in Fig. 9-6.)

6. Working outside the vehicle, push the rubber boots and the connecting rods out of the front panel toward the interior of the car.

7. Remove the Phillips head screws that hold the linkage brackets to the body (Fig. 10-6). Then remove the linkage from the vehicle.

10.3 Heat Ducts and Outlets

Except for the front heater outlets (defroster ducts), the removal of the various heat outlet components will be apparent by looking at them. Replacement outlets are available for the rear heater outlets.

To remove the front heater outlets (defroster ducts), remove the two screws that hold each defroster trim plate to the top of the dashboard. Then, working beneath the dashboard, squeeze the slots of the plastic outlet pieces together so that you can push the outlet pieces up slightly—through the holes in the top of the dashboard. This will make it possible to pull the Y-shaped branch pipe off the heat pipe. Separate the Y-shaped branch pipe from the two outlet pipes. Then, while squeezing their slots together, pull the plastic outlet pipes down and out of the dashboard. Installation is the reverse of removal.
FRONT AXLE

Contents

Introduction .. 2

1. General Description .. 3
 Axle Beam .. 3
 Suspension .. 4
 Steering ... 4
 Wheel Bearings ... 4

2. Maintenance .. 4

3. Front Wheel Alignment ... 5
 3.1 Checking and Adjusting Camber 5
 3.2 Checking and Adjusting Toe 5
 3.3 Checking and Adjusting Steering Lock 5

4. Shock Absorbers .. 6
 4.1 Checking Shock Absorbers .. 6
 4.2 Replacing Shock Absorbers 7

5. Front Wheel Bearings ... 8
 5.1 Replacing and Installing Front Wheel Bearings 8
 5.2 Checking and Adjusting Front Wheel Bearings 9

6. Steering Knuckles ... 9
 6.1 Replacing and Installing Steering Knuckle 9
 6.2 Checking Steering Knuckle 12

7. Torsion Arms, Suspension Ball Joints, and Torsion Bars 13
 7.1 Checking Ball Joints .. 13
 7.2 Replacing and Installing Torsion Arm 13
 7.3 Checking Torsion Arms .. 13
 7.4 Repairing and Replacing Ball Joints 16
 7.5 Replacing Shock Absorber Stud 17
 7.6 Replacing Needle Bearings and Metal Bushings 18

8. Removing and Installing Axle Beams 19

9. Steering .. 21
 9.1 Adjusting Worm and Peg Steering 22
 9.2 Adjusting Worm and Roller Steering 23
 9.3 Removing and Checking Steering Camber 24
 9.4 Removing and Checking Tie Rods 24
 9.5 Removing and Installing Drag Link and Drop Arm 25
 9.6 Removing and Installing Relay Lever, Lever Shaft, and Bushings .. 26
 9.7 Replacing and Installing Steering Wheel, Steering Column, and Steering Column Tube 26
 9.8 Removing and Installing Gearbox 30
 9.9 Disassembling, Assembling, and Adjusting Steering Gearbox ... 31
 9.10 Locating Steering Centerpoint 34

10. Front Axle Technical Data .. 34
 I. Wheel Alignment Specifications 36
 II. Tolerances, Wear Limits, and Settings 36
 III. Tightening Torques for Axle and Steering 35
Front Axle

Prior to the model covered by this manual, the Type 2 front axle was similar to the front axle of the Volkswagen Beetle. However, beginning with the 1966 models, the front axle for Type 2 vehicles was completely redesigned. Although it employs the same operating principles as the earlier axle, every part of the new unit differs in size and shape. The worm and peg steering used on earlier models has likewise been revised and is replaced by worm and roller steering on the 1963 and later models.

The front axle has three functions: springing (for suspension), steering, and wheel alignment. Tire wear and vehicle handling are good indicators of how well these functions are being fulfilled. However, it is always best to maintain the front axle in serviceable condition so that abnormal tire wear and poor handling never affect the car.

Independent front wheel suspension is by trailing links and transverse torsion bars. This system not only prevents the transmission of road shocks from one front wheel to the other, but also provides excellent resistance in their transfer to the suspension parts, chassis, and passengers. Vertical travel of the front suspension is limited by progressively acting upper stops. The greater the impact of the torsion arms (the trailing links) against the upper stops, the greater their springing and energy-absorbing reaction. But because the trailing link system minimizes the suspension deflection caused by severe bumps, the springs are seldom called upon during normal highway driving.

Ball joints at the ends of the torsion arms provide a flexible mounting for the steering knuckle. These joints not only permit the free vertical movement of the front wheels during bump and rebound, but also allow the wheels to be turned around a vertical axis for steering. Front wheel camber adjustments are accomplished by turning an eccentric bushing incorporated in the upper ball joint mountings. And, since the joints are lubricated at the factory, they rarely require further lubrication.

Many repair procedures require specialized equipment that car owners and small repair shops may not have—a hydraulic press and precise measuring jigs, for example. If you lack the skills, tools, or a clean workshop for servicing this front axle and steering, we suggest you have such repairs done by an Authorized VW Dealer or other qualified shop. We especially urge you to consult your Authorized VW Dealer before attempting repairs on a car still covered by the new-car warranty.
1. General Description

The front axle is a rigid beam with pivoting members that provide suspension movement, steering movement, and longitudinal movement of the wheels. The steering gearbox is coupled to the front wheels by a linkage that is an inherent part of the front axle. Therefore, all steering adjustments and repairs are covered in this section of the Manual. The names and positions of the front axle's parts are shown in Fig. 1-1.

Axle Beam

The axle beam itself is an electrically welded assembly consisting of two large parallel steel tubes and a number of heavy-gauge steel stampings. The axle is mounted on the vehicle by bolting its end plates, which incorporate the upper shock absorber mountings, solidly to the frame sidemembers. The axle beam tubes contain the torsion bars, torsion bar mounts, and torsion arm bearings. The bearings for the steering gear lever shaft are housed in a mounting welded to the front of the lower axle tube.
Suspension

Multi-leaf torsion bars provide the springing. There are two bars, one in the upper axle tube and one in the lower. Self-screws hold the bars stationary in their center bushings. Each end of each torsion bar has a torsion arm mounted at its outer end. The lower torsion arms are joined by a stabilizer bar that increases the front suspension's resistance to roll during cornering.

Steering

Worm and peg steering is used on vehicles built from August 1967 through July 1972. The 1973 and later models have worm and roller steering. Both types can be adjusted if necessary, to compensate for mis-nor heel.

The ball-joint tie rod ends do not require lubrication during their service life. Since only the right-hand tie rod has threaded ends, you adjust the lower right-hand tie rod simply by loosening the locknuts and turning the right-hand tie rod. A hydraulic steering damper is linked to the right-hand tie rod to minimize the road shock transmitted to the steering wheel.

Wheel Bearings

Tapered-roller wheel bearings are used on all vehicles covered by this Manual. The inner race for each of the four bearing assemblies consists of a cone surrounded by a number of caged tapered rollers. The outer races are a press fit in the wheel hub bore. The hub is an integral part of the front wheel brake drum, but is separate from the front wheel brake pad used on 1971 and later models. Tapered-roller bearing adjustment is possible by turning the clamp nut on the steering knuckle's such axle.

2. Maintenance

The diagnostic and maintenance steps that must be performed at regular mileage intervals are listed here. Lubrication and checking procedures are described fully in LUBRICATION AND MAINTENANCE or under the listed headings in this section of the Manual.

1. Lubricating the front axle
2. Lubricating and adjusting the front wheel bearings
3. Checking the dual seals and play on the suspension ball joints and tie rod ends (see 7. Suspension Arms, Suspension Ball Joints, and Torsion Bars and 3. Steering)
4. Checking the ball joint play (see 7. Suspension Arms, Suspension Ball Joints, and Torsion Bars)
5. Checking the steering play (see 3. Steering)
6. Checking the front wheel camber and toe (see 3. Front Wheel Alignment)

3. Front Wheel Alignment

Only camber and toe are adjustable. Camber angle and tire contact inclination are determined by the manufactured dimensions of the suspension parts. So damaged parts must be replaced to correct these alignment factors.

The following preparatory steps are essential to accurate alignment measurements:

1. Have the car on a level surface.
2. Inflated the tires to specifications and unload the car except for the spare wheel and a full fuel tank. Then, park the car several lengths and let it settle into its normal position.
3. Check the adjustment of the steering gear and the front wheel bearings. Adjust them if necessary. See 6.2 Adjusting Front Wheel Bearings and 9.1 Adjusting Worm and Peg Steering or 9.2 Adjusting Worm and Roller Steering.
4. Make sure there is no play in the tie rod ends relay lever, or other parts of the steering linkage.

Measuring wheel camber and toe requires suitable gauges. Professional-type instruments may cost several hundred dollars, but the modestly priced gauges available from mail order houses are adequate for home use. Instructions are supplied by the manufacturer.

3.1 Checking and Adjusting Camber

Camber is the angle at which wheels depart from the true vertical when viewed from directly in front of the car. If the tops of the wheels lean inward slightly, they are said to have positive camber; if the lean inward, they have negative camber.

To check:

1. After placing the car on a level surface with its front wheels pointing straight ahead, apply a burette protractor as shown in Fig. 3-1.
2. Using chalk, mark the wheel at the points where it is contacted by the protractor.

3. Turn the split level carrier on the protractor until the bubble is centered, then read the camber angle on the scale.

NOTE

If you are using some other type of gauge, follow the manufacturer's instructions.

4. Roll the car forward a half-turn on the wheels, then repeat the measurement at the chalk-marked points.

5. Take the new reading and average it with the one you obtained earlier. The result is the camber angle corrected for wheel runout.

6. Repeat the entire procedure on the opposite wheel.

The front wheels should have 0° ± 2° of positive camber. Also, the difference in camber between the wheels should not vary more than 10°. If not within specifications, the camber of each wheel should be adjusted to as near 0° as possible.

To adjust camber:

1. Loosen the self-locking nut on the upper ball joint stud. Make sure the notch in the eccentric camber adjusting bushing is roughly toward the front of the vehicle, as indicated in Fig. 3-2.

NOTE

The vehicle must be standing on its wheels while adjustments are being made.

2. Set the split level carrier on the protractor on the specified angle of 45° positive camber.

3. Turn the eccentric camber adjusting bushing (Fig. 3-3) until the bubble in the protractor is centered when the protractor is applied to the chalk-marked points.

4. Torque the self-locking nut on the ball joint stud to 10 N·m (72 ft·lbf). Retrack the camber and, if necessary, repeat the adjustments to bring camber within specifications.

5. Check the toe and adjust if necessary.

3.2 Checking and Adjusting Toe

All Type 2 vehicles are designed to operate with a small amount of toe-in. This means that the front edges of the tires are slightly closer together than the rear edges. Shops with optical aligning devices should follow the alignment manufacturer's instructions to obtain a toe-in angle of 0° ± 3° or ± 1° after adding 12 to 16 kg (25 to 35 lb) of extra weight above the wheel. The maximum toe change should not exceed 20°.

Most small shops and individual car owners check the toe with a track gauge. This device is used to measure the distance between two marked points at the front edges of the tires, then the distance between the same two points after the car has been rolled forward until the marks are at the rear. The measurement made at the rear should be 0.0 to 3.3 mm (0.000 to 0.126 in), or approximately 0.0 to 1/32 in greater.

NOTE

These specifications apply only when the wheels are in their straight-ahead position. Toe specifications with the wheels turned are given in 10, Front Axle Technical Data.
To check and adjust steering lock:

1. Check the steering—preferably on a hydraulic lift.
2. Turn the front wheels fully to the left and to the right. In either position, the clearance between the tires and the stabilizer bar should be 20 mm (+, −) as indicated in Fig. 3-5.

3. Clearances that fall outside the prescribed range, loosen the locknut on the steering lock adjusting bolts.
4. After adjusting, tighten the locknut.

4. Shock Absorbers

Make sure you install only shock absorbers intended for the front of the vehicle. Mismatched shock absorbers will impair handling and ride. It is not necessary, however, to replace both shock absorbers if only one is defective. Also, front axle shock absorbers of different manufactures can be combined as long as their damping characteristics are identical. The vehicle is to be subjected to heavy loads, rough roads, or extremely high temperatures, it may be advisable to install heavy-duty shock absorbers in the interest of longer service—despite their effect on the riding qualities of the car.

CAUTION—
Install heavy-duty shock absorbers on all four wheels on the same axle. Unbalanced handling will be adversely affected.
4.1 Checking Shock Absorbers

You can quickly check the shock absorbers by grasping the front bumper and rocking the car vigorously. When the car settles, the shock absorbers should absorb the energy and settle into its normal position. If the car continues to rock or bob, the shock absorbers are worn. Excessive bounce on the highway also signals defective shock absorbers. Badly worn shock absorbers often make knocking noises when the vehicle is driven.

You can hand-check a shock absorber by extending and compressing it while holding it in its installed position. It should operate smoothly and without unusual resistance throughout its entire stroke. It is possible, compare the used shock absorber with a new one. New shock absorbers that have been in storage may have to be turned several times before they reach full efficiency.

An adequate supply of fluid is placed in the shock absorbers during manufacture to compensate for small leaks. Minor traces of fluid are acceptable if the shock absorber still functions efficiently.

4.2 Replacing Shock Absorbers

Shock absorbers cannot be repaired or serviced and should be replaced if faulty.

To replace:

1. Raise the vehicle and remove the front wheel.
2. Remove the M12 nut and bolt that hold the upper end of the shock absorber to the front axle and plate.
3. Pull the top of the shock absorber to the rear, then remove the M10 nut that holds the lower end of the shock absorber on the threaded stud in the lower torsion arm.
4. Remove the old shock absorber.
5. Install the lower end of the new shock absorber on the stud in the lower torsion arm.
6. Install the top of the shock absorber about 30° to the rear, and then torque the nut to 25 to 35 ft-lbs (33 to 47 Nm) while the shock absorber is in this position.

NOTE
This procedure will prevent the lower rubber bushing from warping as the suspension moves upward if the vehicle is standing on its wheels while the new shock absorber is being installed. Do not install the shock absorber 90° to the rear onboard length.

7. Move the top end of the shock absorber into the shell with the upper mounting hole. Install the nut and bolt with a torque of 50 ft-lbs (68 Nm).

If only the rubber shock absorber bushing are faulty, it is possible to replace them without replacing the entire shock absorber.

To replace shock absorber bushing:

1. Press the metal sleeve and rubber bushing out of the shock absorber as shown in Fig. 4-1.

![Fig. 4-1. Metal sleeve and rubber bushing being pressed out of the shock absorber](image)

2. Coat the new rubber bushing with silicone spray or silicone as shown. Press the rubber bushing into the shock absorber until the bushing's shoulder contacts the shock absorber eye.
3. Using the setup shown in Fig. 4-2, press the metal sleeve in from the same side.
4. If necessary, correct the position of the rubber bushing using the same setup used to remove the old sleeve and bushing.

![Fig. 4-2. Sleeve being pressed in](image)
5. Front Wheel Bearings

There are two tapered-roller bearing assemblies at each front wheel. Each bearing has a solid steel outer race and an inner race that consists of a steel cone and a number of caged tapered rollers. The bearings and related parts are shown in Fig. 5-1.

To remove inner races:
1. Remove the road wheel, on 1977 and later models, the brake caliper. Then pry off the dust cover.
2. Using a 3/8 in. (10 mm) key, loosen the socket head screw in the clamp nut. Then unscrew the clamp nut from the stub axle on the steering knuckle.

NOTE — The clamp nut for the left front wheel has a left-hand thread.

3. Pull off the brake drum or disc, being careful not to let the thrust washer and the outer tapered-roller bearing inner race fall out and onto the floor.
4. With the brake drum or disc on the workbench, carefully remove the thrust washer and the outer bearing's inner race. Store them in a clean, dust-free place.

NOTE — On vehicles with 3-box brakes, you can separate the disc from the wheel hub by taking out the wheel hub screws, then tapping the wheel studs with a hammerallet.

5. Pry the grease seal out of its recess in the rear of the drum or wheel hub. Then lift out the inner tapered-roller bearing's inner race. Store it with the outer bearing.

To install inner races:
1. Carefully clean the inner bearing races with solvent, then dry them with compressed air.

CAUTION — Do not use solvents such as gasoline or carbon tetrachloride as they remove all lubrication. Also, do not let parts of compressed air slow the parts. Lubricated bearings can be damaged by rapid movement.

2. Inspect the inner bearing races. Replace them if they are worn, burned, rough, or heat-blued.
3. Clean the brake drum or wheel hub and inspect the outer bearing races. Replace them if they are worn, burned, rough, or heat-blued.
4. Pack the inner bearing's inner race with multipurpose grease, as described in LUBRICATION AND MAINTENANCE. Carefully place it inside the hub.
5. Press a new grease seal into place.
6. Inspect the stub axle for burrs or blunted areas. Check the bearing seat dimensions as described in 6.2 Checking Steering Knuckle. If satisfactory, lightly coat the stub axle with multipurpose grease.

5.1 Removing and Installing Front Wheel Bearings

Before you can remove the brake disc and wheel bearings from vehicles with disc brakes, the brake caliper must be removed as described in 6.4 Removing and Installing Steering Knuckle. You can remove the inner races with common hand tools. The solid steel outer races, however, are pressed into the brake drum or the wheel hub and should be removed with a hydraulic press and appropriate mandrels.
7. Carefully slide the brake drum or wheel hub with or without the brake disc, onto the stub axle so that the grease seal or bearing races are not accidentally damaged by the sharp threads.

8. Pack the outer bearing's inner race with multi-purpose grease. Then carefully slide it onto the stub axle and into the hub.

9. Install the thrust washer and the clamp nut. Tighten the clamp nut on the stub axle until the bearings just contact their outer races.

10. Adjust the bearings as described in 5.2 Checking and Adjusting Front Wheel Bearings. Install the dust cap, the brake caliper (where fitted), and the road wheel.

To remove outer races:

1. Support the brake drum or wheel hub, outside down, on the press box. Using a suitable driving mandrel, press out the inner bearing's outer race.

2. Turn over the brake drum or wheel hub.

3. Using a suitable driving mandrel, press out the inner bearing's outer race.

Installation is the reverse of removal. The inner bearing's outer race, being the larger, is pressed out last but the sequence is unimportant to installation. Make certain, however, that the hub recesses are clean and free of burrs or pressure marks that could prevent the races from seating completely.

5.2 Checking and Adjusting Front Wheel Bearings

Wheel bearings should turn smoothly and not have excessive axial play. If the bearings feel gritty, have small spots, or make noises when the wheel turns, they probably need to be replaced. Excessive axial play, though, can be corrected by adjusting.

To adjust bearings:

1. Raise the wheel, then pry off the dust cap.

2. If the bearings have just been installed, tighten the clamp nut to about 1.0 in-lb (7 N·m) while you hand-turn the brake disc or drum.

CAUTION

Never torque the clamp nut to more than 3.0 in-lb (36 N·m). Doing so will damage the bearing races.

3. To measure the bearing axial play, install a dial indicator on one of the wheel lug holes or in place of a wheel bolt (or use a dial indicator with a magnetic base).

4. Position the dial indicator pin against the end of the stub axle as shown in Fig. 5-2. Then move the wheel in and out by hand, turning the clamp nut one way or the other until the axial play is between 0.03 and 0.12 mm (0.001 and 0.005 in.)

NOTE

Turn the wheel and repeat the measurement at several different points. The readings should not vary greatly and their average should fall within the prescribed range. Replace bearings that will not adjust properly.

5. Torque the wheel head clamp screw to 15 to 20 in-lb (11 to 14 lb·ft)

8. Install the dust cap and lower the wheel to the ground.

6. Steering Knuckles

The steering knuckles, with their integral steering arms, are held onto the torsion arms by ball joints. For safety as well as durability, it is important that the steering knuckles are not bent. Check them carefully after an accident or other severe impact.

6.1 Removing and Installing Steering Knuckle

When removing the steering knuckle, take off the brake assembly only if you are planning to replace the steering knuckle itself. The brake assembly can be left in place if only the ball joints require attention.
To remove steering knuckle:

1. On vehicles with drum brakes, remove the brake drum and the wheel bearings as described in 8.1 Removing and Installing Front Wheel Bearings.

2. On cars with disc brakes, remove the brake caliper from the steering knuckle by removing the two bolts and the brake hose clamp indicated in Fig. 6-1.

CAUTION

The caliper must have cooled to room temperature before you remove it. Otherwise, it may be damaged by heat distortion.

Fig. 6-1. Brake hose clamp that holds and retains the brake hose on steering knuckle.

3. Using a slip wire hook, suspend the brake caliper from the car body so that it is not being supported by the brake hose.

WARNING

Never let a brake caliper or brake backing plate assembly hang by the brake hose alone so that the hose could weaken the hose and cause subsequent brake failure.

4. On cars with drum brakes: remove the two M 10 bolts that hold the brake backing plate assembly on the steering knuckle. Remove the backing plate assembly and suspend it from the car body so that its weight is not supported by the brake hose.

5. Remove the cotter pin and the castle nut from the tie rod end stud. Then push out the tie rod end as shown in Fig. 6-2.

CAUTION

Do not hammer out the tie rod end. Doing so will ruin the thread and make reinstallation impossible.

Fig. 6-2. Tie rod end being pressed out. The threads on the housing are ruined.

6. On cars with disc brakes: remove the three bolts that hold the splash shield on the steering knuckle. Then remove the splash shield.

7. Remove the M 12 self-locking nut from the lower suspension ball joint stud. Then install an M 16 x 1.5 cap nut and press the ball joint stud loose as shown in Fig. 6-2.

Fig. 6-3. Ball joint being pressed loose in place.
3. Position the eccentric camber adjusting bushing so that its match point is forward as shown in Fig. 6-8.

To install:

1. Loosely attach the steering knuckle to the lower ball joint.

2. Using a tool similar to the one shown in Fig. 6-5, lift the lower torsion arm until the upper ball joint stud clears the steering knuckle.

4. Install new self-locking nuts on the ball joint stud. Torque only the nut on the upper ball joint stud to 10 mg (22 ft-lb).

5. Install the tie rod end and in the steering knuckle. Torque the castlehead nut to 20 mg (22 ft-lb). Advance the nut, if necessary, to uncover the castlepin hole. Then install a new castle pin.

6. On vehicles with drum brakes, install the brake backing plate assembly. Torque the M 10 bolts to 55 to 60 mg (40 to 43 ft-lb).

7. On vehicles with disc brakes, install the splash shield. Torque the bolts to 10 mg (20 ft-lb).

8. Install the brake drum or disc. Then adjust the front wheel bearings as described in 5.3 Checking and Adjusting Front Wheel Bearings.

9. On vehicles with disc brakes, install the brake caliper. Torque the M 12 bolts used on 1968 through 1977 models to 10 mg (22 ft-lb). Torque the M 14 bolts used on 1973 and later models to 16 mg (18 ft-lb).

10. Install the road wheel. Torque the wheel bolts used on 1968 through 1970 models to 13 mg (94 ft-lb). Torque the wheel nuts used on 1971 and later models to 12 to 14 mg (87 to 101 ft-lb).

WARNING:

Tighten the wheel bolts or nuts with the vehicle on the ground. The torque wrench must be in the correct position.
11. Adjust the camber and toe as described in 3. Front Wheel Alignment. Torque the self-locking nut on the upper ball joint stud to 10 mkg (79 ft-lb).

6.2 Checking Steering Knuckle

The steering knuckle can be checked either on or off the car. Measure the stub axle at the three points indicated in Fig. 6-7. The diameter of the outer bearing seal (A) should be 19.03 to 19.05 mm (0.7497 to 0.7499 in.). The diameter of the inner bearing seal (B) should be 31.73 to 31.75 mm (1.2482 to 1.2499 in.). The spacer ring seal (C) should have a diameter of 38.04 to 38.06 mm (1.4976 to 1.4992 in.). Check the dimensions with a micrometer or a vernier caliper.

![Fig. 6-7.](image)

Fig. 6-7. Show the measuring points. Dimensions are given in this drawing.

You can check the steering knuckle's stub axle for bending using a vernier caliper and a machinist's square as shown in Fig. 6-8. Make your measurements at not less than three points around the stub axle. The difference between any two measurements should not exceed 0.25 mm (0.010 in.).

![Fig. 6-8.](image)

Fig. 6-8. A vernier caliper and machinist's square being used to check for bend in stub axle.

On vehicles with drum front brakes, use tool VW 25817-2 to check the steering arm for bending. The steering knuckle gets within tolerances when the hole in the steering arm is in line with another hole in the gauge, and when the upper face of the steering arm eye is parallel to the surface of the gauge as indicated by a in Fig. 6-9.

![Fig. 6-9.](image)

On vehicles with disc front brakes, use a straightedge and vernier caliper to check the steering arm for bending (Fig. 6-10). The distance from the straightedge to the outer edge of the rear bolt hole should be 110.50 to 111.50 mm (4.369 to 4.399 in.).

![Fig. 6-10.](image)

Fig. 6-10. Steering arm being checked for bending.

CAUTION

Steer steering knuckles must be replaced and not straightened. Bending them back to their original shape will seriously weaken their structural integrity.
7. Torsion Arms, Suspension Ball Joints, and Torsion Bars

The torsion bars that provide springing for the front wheels are housed inside the axle beam. Socket head set screws hold the torsion arms at the lower ends of the bars. The suspension ball joints are a press fit in the torsion arms.

7.1 Checking Ball Joints

A special lever and vernier caliper should be used to check the ball joint play. If the steering knuckle has been removed, check the ball joints as described in 7.4 Repairing and Replacing Ball Joints.

To check:

1. Lift the car. Then turn the steering to one side.
2. Install the special lever as shown in Fig. 7-1.
3. Place a vernier caliper over the ball joint with one jaw on the steering knuckle and the other on the torsion arm. Note the reading.
4. Pull down on the lever in order to raise the torsion bar and expand the ball joint. Note the new reading on the vernier caliper.
5. Compare the two readings. The difference between them is the ball joint play.

NOTE:
Neither the upper or lower ball joint should exceed 0.039 in. (0.99 mm) play. Joints that exceed this must be replaced.

7.2 Removing and Installing Torsion Arm

Each torsion arm is held to its torsion bar by a socket head set screw and locknut.

To remove:

1. Remove the steering knuckle complete with brake assembly.
2. If the lower torsion arm is to be removed, disconnect the stabilizer bar by driving the retainers off the two stabilizer bar rubber mounting clamps.

NOTE:
It is necessary to bend down the retaining tabs on the retainers before driving them off. Obtain new retainers for use during reassembly.

3. Remove the nut from the stabilizer bar mounting bolt on the lower torsion arm, then take off the stabilizer bar.
4. Loosen the locknut on the socket head set screw that holds the torsion arm on the torsion bar, then remove the set screw.
5. Remove the torsion arm from the end of the torsion bar.

Installation is the reverse of removal. Insert the rubber seal for the torsion arm. Replace the seal if it is worn, cracked, or loose-fitting.

7.3 Checking Torsion Arms

The torsion arms can be checked for bending only after they have been removed from the car. A special measuring tool, VW 2824, is required for this job.

CAUTION:
If you lack the tools or special know-how needed for checking the torsion arms or replacing the suspension ball joints, we suggest you have your repairs done at an Authorized VW Dealer or other qualified shop. We especially urge this if you intend to renew your Authorized VW Dealer warranty before attempting repairs or a car still covered by the new-car warranty.

Suspension ball joints used prior to the 1973 model year have screw-in plug plugs in their end plates. The latest type ball joints do not have these plugs. Instead, there is a small depression in the end plate with a 6-mm (0.236-in.) chamfered test surface. This modification has necessitated a minor change in the test jig when checking
Torsion arms with the late-type ball joints the test plates on the test jig must be changed.

The ball joint without a plastic plug is shown in Fig. 7-2.

6 See whether the test point contacts the testing measuring plate (or the point on the measuring plate contacts the test surface on the ball joint) as shown in Fig. 7-4 or Fig. 7-5.

![Image]

Fig. 7-2. Late-type ball joint with test surface (arrow) instead of plastic plug.

To check torsion arms:

1. Carefully clean the torsion arm and ball joint.

2. Inspect the bearing surfaces on the torsion arm. If they are worn, replace the torsion arm complete with the ball joint and also the needle bearing and metal bushing in the axle tube.

3. On early-type ball joints, remove the plastic plug from the end plate and install the test point in its place as shown in Fig. 7-3.

![Image]

Fig. 7-3. Test point being installed. Screw the point into the hole for the plastic plug.

4. With the late-type ball joints, install the proper measuring plates on the test jig and screw the measuring pin into the appropriate hole in the measuring plate.

5. Using the correct bushings from the set supplied with the VW 282d, install the torsion arm in the test jig. Use bushing VW 282d-12 for the torsion arm's inner bearing surface and spacer ring VW 282d-21 for the outer bearing surface.

![Image]

Fig. 7-4. Early-type ball joint. Test area should contact the test on test plate.

NOTE

The lower torsion arm should contact the small outer boss on the test jig, as shown in Fig. 7-4. Upper torsion arms should contact the larger outer boss that is just to the left of the small boss being contacted in the illustration. The threaded holes for the test point used with late-type ball joints are the same, regardless of position, as the bosses used with the early ball joints.

![Image]

Fig. 7-5. Late-type ball joint. Rear on fig should contact test surface on ball joint. Torsion arm shown is for a Trans 7 motor.

CAUTION

All torsion arms must be replaced complete with ball joints and not straightened. Bending them back to their original shape will seriously weaken them structurally.
7. On early type ball joints, remove the dust seal and screw in a new plastic plug.

7.4 Repairing and Replacing Ball Joints

To check the ball joint play after the torsion arm has been removed, place a feeler gauge over the ball joint as shown in Fig. 7-6. Press the stud all the way and note the measurement. Then pull the stud out and take another measurement. Compare the two readings. The difference between them is the ball joint play.

![Fig. 7-6: Measuring ball joint play](image)

NOTE

New ball joints must not exceed 0.30 mm (0.012 in.) play. Used ball joints must not exceed 2.0 mm (0.079 in.) play. Used ball joints that are near or near this wear limit must be replaced.

Damaged ball joint seals can be replaced. However, the late-type ball joints without plastic plugs must be replaced if dirt has entered them. The early-type ball joints should be thoroughly cleaned in solvent after the damaged seal has been removed. Then, remove the plastic plug from the tapped hole and install a grease fitting. Force multipurpose grease through the joint until all traces of dirt have been expelled.

Install the small steel retaining ring on the new dust seal. Then fill the new dust seal with approximately 15 g (0.5 oz.) of multipurpose grease.

Install the dust seal on the ball joint. Then place a cone seal above over the seal as shown in Fig. 7-7. Slide the retaining ring over the conical sleeve and off its large end onto the ball joint seal. The conical sleeve will keep the retaining ring from accidentally puncturing the new seal.

![Fig. 7-7: Installing dust seal and retaining ring](image)

After the new dust seal has been installed, remove the grease fitting, then install the tapped hole with a new plug.

CAUTION

Do not hammer in the plug, screw in an Otherwise, it will strip ball joint.

Depending on the tolerance range of the torsion arm, either a standard size ball joint or an oversized ball joint is installed. The torsion arms with oversize holes—0.30 mm (0.012 in.) larger—are identified by a letter 'B' stamped in the locations shown in Fig. 7-8.

![Fig. 7-8: Torsion arm with oversize ball joint](image)
The oversize ball joints are 0.36 mm (0.014 in.) larger in diameter and are identified by two additional V-shaped notches as indicated in Fig. 7-9. These notches are located 45° from the two square installation-position grooves found on both standard and oversize ball joints.

![Fig. 7-9](image)

Fig. 7-9 Grooves (notches) that identify an oversize ball joint.

The ball joints are a press fit in the torsion arms. They must fit properly and, once pressed out, must never be reinserted in a torsion arm.

To replace ball joint:

1. Press the old ball joint out of the torsion arm as shown in Fig. 7-10.

![Fig. 7-10](image)

Fig. 7-10 Hydraulic cup press being used to press the ball joint out of the torsion arm.

2. If necessary, press the eccentric camber adjusting bushing off the ball joint for an upper torsion arm as shown in Fig. 7-11.

![Fig. 7-11](image)

Fig. 7-11 Ball joint being pressed out from camber adjusting bushing. Move the ball joint to a location on the ball joint and then rotate so that the ball joint will remain in a square position.

3. Align the installation-position groove with the boss on the torsion arm (Fig. 7-12).

![Fig. 7-12](image)

Fig. 7-12 Installation-position groove and boss on the torsion arm. Ball joint must remain in a square position.

4. Being careful to keep the groove and the forged boss aligned, press the new ball joint into the torsion arm. Use a sleeve-type driving mandrel that will apply pressure to the outer part of the ball joint only.

NOTE

Press the ball joint in from the bottom of the torsion arm.
Replacing Shock Absorber Stud

At the one side shock absorber stud is available to replace.

1. Place stud flare end up. Insert or extended threaded end of stud through the grommet, then start Shock Absorber stud in the hole 45/64" dia. Gradually close the remaining part of the stud.

2. Slowly close the remaining part of the stud until the stud is engaged in the hole.

3. Lock nut with locking wire in place.

4. Torque to specification (Fig. 7.10). Then pull out the shock absorber stud and install the new one.

5. Lock nut with locking wire in place.

6. Torque to specification (Fig. 7.10).

NOTE:

The procedure must be followed exactly as stated to ensure proper installation of the shock absorber stud.
7.6 Replacing Needle Bearings
And Metal Bushings

The needle bearings are more likely to require replacement than the metal bushings which are subject to very little wear. However, if wear is noted on the torsion arm bearing surface, replace the metal bushing as well as the torsion arm.

To remove:

1. Remove the torsion arms and torsion bars as described in 7.5 Removing and Installing Torsion Bars.
2. Using an expander tool or a loggie washer behind the needle bearing, pull out the needle bearing with a slide hammer as shown in Fig. 7-16.
3. Measure the metal bushing for wear as shown in Fig. 7-17.

4. If the metal bushing has worn to a diameter greater than 48.00 mm (1.886 in.), pull it out with a slide hammer and the tools shown in Fig. 7-18.

CAUTION
Do not pull out the pinion shaft as it is not subject to wear. Replacement shafts are not available, so if you remove or damage them, the entire axle bearing must be replaced.

Fig. 7-18. Torsion arm in position to pull out metal bushing without removing pinion shaft.

5. Clear the needle bearing seats. Then, using the internal measuring gauge illustrated in Fig. 7-17, check the diameter of the needle bearing seats.

NOTE
The measurement is essential since both standard and oversize needle bearings are used.

Initial standard bearings in either upper or lower tubes that measure 58.07 to 58.99 mm (2.289 to 2.323 in.) install oversize bearings in either upper or lower tubes that measure 57.17 to 57.19 mm (2.2507 to 2.2515 in.). Standard bearings are 56.98 to 58.98 mm (2.245 to 2.323 in.) in diameter; oversize bearings are 57.17 to 58.19 mm (2.2507 to 2.2515 in.) in diameter.

Oversize bearings are marked with the letter "U" on the centered end which faces outward. If the bearing seats are no longer within tolerance, replace the axle beam.
Clean the axle tube, portions of the needle bearing and metal bushing seals. Then drive in the needle bearing hardened face outward, until the shoulder on the special drill (VW 772) contacts the axle tube as shown in Fig. 7-19. Using the needle bearing as a pilot for the drill, drive the metal bushings in with VW 772.

After the needle bearing and metal bushing are driven into place, install the seal retainers with their legs in a vertical position as shown in Fig. 7-21.

If the special drill is unavailable, position the needle bearing and the metal bushing as shown in Fig. 7-20. Dimensions are 141.00 - 1.00 mm (5.551 - 0.040 in). Dimension b is 7.50 ± 0.50 mm (276 - 288 m). Over-sized seal retainers are available for use with oversized needle bearings. The oversize seal retainers are marked with a groove as indicated by the arrow in Fig. 7-22.

Fig. 7-20. Axle tube, needle bearing and metal bushing assemblies.

Fig. 7-21. Seal retainers mounted in needle bearing. The leg should be vertical as indicated by the arrow.

NOTE:
Over-sized seal retainers are available for use with oversized needle bearings. The oversize seal retainers are marked with a groove as indicated by the arrow in Fig. 7-22.

Fig. 7-22. Oversized seal retainer marked by groove.

When the seal retainers have been correctly installed, install new rubber seals. Then reinstall the suspension bars and suspension arms, the steering knuckles and brake assembly, and other remaining parts.
8. REMOVING AND INSTALLING AXLE BEAM

Though most front axle repairs can be carried out with the axle beam mounted on the car, it may be necessary to remove the axle beam when correcting body or frame damage or to facilitate a complete front axle rebuild. If you suspect that the axle beam has been bent by accident damage, you can check the axle tubes with a straightedge.

CAUTION

Axle axle beam must be replaced and not straightened. Bending from back to their original shape will necessarily weaken them significantly.

To remove:

1. Raise the car and remove the front road wheels.
2. Disconnect the brake hoses at the brackets. Plug the brake lines with new bleeder valve dust caps.
3. Remove the cotter pin from the speedometer cable where the cable and projects from the left dust cap. Then, working behind the steering knuckle pull out the cable complete with its housing.
4. Working under the car remove the cover plate that is beneath the pedal cluster.
5. Engage either first or third gear. Then disconnect the gearshift rod at the coupling indicated in Fig. 8-1.

Fig. 8-1. Coupling points where gearshift rod can be disconnected.

6. On vehicles with manual transmissions, remove the gearshift lever and front gearshift rod. On vehicles with automatic transmissions, remove the gearshift rod by unbolting it from the lower part of the selector lever. See TRANSMISSION AND REAR AXLE or AUTOMATIC TRANSMISSION.

7. Disconnect the clutch cable from the pedal arm at the point indicated in Fig. 8-2.

Fig. 8-2. Clutch cable disconnecting point shown.

8. Disconnect the parking brake cables from the parking brake lever.

9. Remove the cotter pin and destated nut from the drag link one stud. Then press the drag link end out of the relay lever with the tool shown in Fig. 8-3.

Fig. 8-3. Drag link end being pressed out. The drag link is shown being pressed out in the lowering of the relay lever, but the drag link should be used in position "A" of the relay lever.

CAUTION

Do not remove the drag link and spring because it may cause the trust and make repair impossible.
9. Steering

The worm and peg steering gearbox used on 1958 through 1972 Type 2 vehicles is shown in Fig. 9-1.

![Fig. 9-1. Worm and peg steering gearbox](image)

The steering system normally requires no maintenance. However, the steering gearbox can be damaged if the vehicle is operated for a long time with improperly adjusted steering. Replacement parts are available for the worm and peg steering gearbox. Complete data for rebuilding this unit are given later in this section.

Although the removal and installation procedures given in this section are illustrated with photos of the worm and peg unit, the procedures apply equally to the worm and roller steering system. For most parts, the worm and roller steering gearbox must be replaced as a unit if it is worn or damaged. However, the roller shaft or seal, Part No. 211-415 2/5A, is available as a replacement part.
Fig. 9-3 is a cross-section of the worm and roller steering gearbox. It shows the location of the self-replaceable component, the roller shaft oil seal.

To replace seal:

1. Remove the drop arms as described in 8.5 Removing and Installing Drag Link and Drop Arm.

2. Using a sharp-edged screwdriver, pry out the faulty seal.

CAUTION

Be careful not to scratch the roller shaft as doing this will cause rapid wear of the new seal and renewed leakage.

3. Thoroughly clean the seal recess in the steering gearbox housing and wipe clean the exposed end of the roller shaft.

4. Wrap the splines of the roller shaft with thin plastic electrical tape in order to protect the seal from being cut by the splines as the seal is installed.

5. Lightly lubricate the sealing lip and pack the groove in the seal with multipurpose grease. Then slide the oil seal fully on the shaft—with the seal's grooved side toward the steering gearbox.

6. Using an appropriate tool, drive the oil seal fully into position.

NOTE

A suitable-driven tool is a tube that has an inside diameter of 32 mm (1.25 in.), an outside diameter of 36 mm (1.42 in.) and a length of 100 mm (4 in.).

7. Reinstall the drop arm. Use a new lock plate and torque the nut to 140 Nm (101 ft lb).

8. Using a new clip, check the steering gearbox oil level. If necessary, add Hypoid gear oil until the roller shaft is covered.

9.1 Adjusting Worm and Peg Steering

Check the worm and peg steering with the vehicle lifted. Turn the steering back and forth through its centered position several times. You should feel resistance as the steering passes through its centerpoint, but it should do so smoothly—without sticking. If there is no resistance or if the steering binds, adjust the steering.

To adjust:

1. Torque the steering gearbox mounting bolts to 2.5 to 5.0 Nm (225 to 44 lb ft) and the steering gearbox cover bolts to 3.5 Nm (26 ft lb).

2. Loosen the locknut for the adjusting screw. Have someone gradually turn the adjusting screw (Fig. 9-4), until you feel the correct resistance as the steering passes through the centerpoint.

Fig. 9-4 Worm and peg steering being adjusted.
5. If you lack an experienced helper all, use a torque wrench as shown in Fig. 8-1.

NOTE:
Take all the horn button cap screws and the
sprang detent pin out of the steering wheel nut. Also, the
drag link ends, the disconnecting from the
drop arm as just led in 8-5 Removing and
Installing Drag Link and Drop Arm

4. Turn the adjusting screw one way or the other in
small increments until it is possible to turn the steering
through the centerpoint with a torque of 8 to 18
in-lb (7 to 16 en) in.

NOTE:
The torque gage in Step 4 applies only to
gearboxes that have run at least 2000 miles.
(3600 km) or about 20,000 km.

9.2 Adjusting Worm and Roller Steering

To check the adjustment of the worm and roller steering
in the vehicle—at standstill—remove the front wheels and
check the steering wheel spoke at its extreme outer
and inner points. Turn the steering wheel lightly in both
directions. The freeplay should not exceed 15 mm (5/8")
measured at the wheel rim.

If the steering freeplay is excessive, check to see that
the looseness is not caused by worn tie rod ends, adjust
the drop arm or a worn relay lever shaft. Make sure that
the steering gear box is mounted firmly and that its cover
bolts are torqued to 2.5 mkg (18 ft. lb.). If no faults are
found, correct excessive centerpoint freeplay by making
adjustments at the steering gearbox.

To adjust

1. Disconnect the drag link from the drop arm as de-
scribed in 8.5 Removing and Installing Drag Link
and Drop Arm

2. Turn the steering wheel 180° to 250° to either the
left or the right

NOTE:
The steering is centered when the pointer on
the worm spine disc cap is in line with the
7-mm (9/32") square boss on the worm
gear cap. For all repair operations, aim the
Steering center of the pointer on the left
side must be within the 7-mm (9/32") limits of
the square boss (Fig. 8-3).

3. Loosen the locknut for the adjusting screw. Then
turn out the adjusting screw one complete turn

4. Working under the vehicle, move the drop arm back
and forth. Gradually turn in the adjusting screw until
no play is felt in the drop arm.

5. Hold the adjuster in its optimum position while tight-
ening the locknut to 90 to 160 mkg (20 to 40 ft.
lb.).

6. Take all the horn button and disconnect the horn
wire. Then attach a torque gauge to the steering
wheel as shown earlier in Fig. 8-1.

7. Turn the steering wheel until the steering is nearly
centered. Using the torque gauge, measure the steering
through its centerpoint. The steering is cor-
rectly adjusted if a turning torque of 6 to 12 in-
lb (0.5 to 1.1 ft. lb.) is required.

8. If necessary, correct the adjustment, then recheck
it with the torque gauge.
8.3 Removing and Checking Steering Damper

The steering damper is a hydraulic cylinder mounted between an eye in the relay lever and a bracket on the axle beam. To remove it, take out the cotter pin and unscrew the M 10 nut from the bolt through the relay lever. Then remove the bolts that hold the damper on the axle beam.

Hand-check the steering damper by extending and compressing it while holding it in its installed position. It must operate with uniform resistance throughout its entire stroke. If necessary, compare the used unit with a new steering damper. Minor fluid leakage does not make replacement necessary, as long as efficiency is not impaired.

To prevent steering trouble due to premature failure of the steering damper, make certain that the damper you install is the correct one for the vehicle. Check the bushing and sleeve in the removed damper before reinstallation. If they are worn or damaged, replace them.

During installation, make sure that the large flat washer is between the damper bushing and the relay lever. Use a new cotter pin at the relay lever and a new lock washer under the head of the bolt that holds the damper on the axle beam.

Installation is the reverse of removal. Carefully inspect the tie rods for cracks. Bending can be detected by rolling the tie rods over a flat surface.

CAUTION

Rust in the rod must be removed and the rods straightened. Bending them back to their original shape will usually weaken them structurally.

Check the tie rod ends for play and replace any that are worn. If you cannot hand-move the tie rod end stud, replace the tie rod end. If the tie rod and boots are bent or cracked, they can be replaced. However, the entire tie rod end should be replaced if dust has entered the ball socket. If in doubt, replace the tie rod end.

After installing the tie rod ends in the relay lever and the steering arms, torque the castle nut to 1.5 mkg (13 ft. lbs.). Advance the nut, if necessary, to uncover the cotter pin hole. Then install new cotter pins in all four tie rod and studs.

NOTE

When you install the right hand tie rod, the tie rod end with righthand threads should be at the steering knuckle end.

Check the front wheel toe and adjust it to the specifications given in 8.2 Checking and Adjusting Toe. Twist the right-hand tie rod as far as it will go so that the tie rod ends are parallel. Then torque the castle bolts for the right-hand tie rod to 1.5 mkg (13 ft. lbs.).

8.5 Removing and Installing Drag Link and Drop Arm

The drop arm must be removed before the steering gear box can be removed from the frame.

To remove:

1. Working under the vehicle, remove the cover plate that is beneath the pedal cluster.
2. Remove the cotter pin and then the castle nut from the drag link ends.
3. Using the tool illustrated earlier in Fig. 9-6, press the drag link ends out of the drop arm and the relay lever.

CAUTION

Do not hammer out the drag link ends. Lining so will ruin the threads and make reinstallation impossible.

Fig. 9-6. Tool used to press out the rod end.
4. Remove the cotter pin and then the threaded nut from the peg shaft or roller shaft of the steering gearbox.

5. Using a puller as shown in Fig. 9-7, remove the drop arm from the shaft.

9.6 Removing and Installing Relay Lever, Lever Shaft, and Bushings

Play in the relay lever can usually be corrected by replacing the relay lever shaft and its bearings.

To remove relay lever and shaft:

1. Working under the vehicle, remove the cover plate that is the under the pedal cluster.

2. Disconnect the tie rods, the steering damper, and the drag link from the relay lever. These jobs are described under the three preceding headings.

3. To prevent the spring washer from forcing the lever up and damaging the bore, clamp the relay lever as shown in Fig. 9-9. Then remove the nut and clamp bolt from the relay lever.

4. Remove the clamp and then the relay lever.

Installation is the reverse of removal. Make sure that the spindles bolted into the drop arm and on the shaft are in good condition and that the spindles in the replacement arm match those of the shaft. Align the arm with the shaft as shown in Fig. 9-8. On early models, torque the nut to 8 to 11 ft lb. On 1978 models, torque the nut to 14 ft lb. On the drag link ends, to 3.9 ft lb.

5. Using a screwdriver, pry the end of the bottom of the relay lever shaft mounting. (Alternatively, you can drive it out with a hammer and cold chisel.)

6. Pull the relay lever shaft out downward.

NOTE

Normally, the shaft will fall out of its boreage when the end cap is removed because there is a bend on the lower end of the shaft. It cannot be snapped out upward. Check the top end of the shaft for burrs if it sticks.

7. Install the end cap, the upper protective cap, and its gasket. Obtain replacements for any worn or damaged parts.
To replace lower shaft bushings:

1. Remove the grease nipple. Then, using a slide hammer and appropriate extraction tools, drive the old bushings out downward (Fig. 9-10).

2. Using the tools shown in Fig. 9-10, drive in the new lower bushing from above until it is flush with the bottom of the mounting.

3. Drive the upper bushing in only until its upper edge projects 1.0 mm (0.03 in.) above the mounting. Measure this by placing a feeler gauge between the driving tool and the top of the mount, or by measuring the projecting part of the bushing with a vernier caliper or depth micrometer.

Installation of the relay lever and shaft is the reverse of removal. Before you install the clamp bolt and nut, compress the spring washer by installing a clamp, as shown in Fig. 9-9. Torque the nut to 8.0 to 11.0 mkg (58 to 80 ft lb.)

Install the end cap and the grease nipple. Then lubricate the relay lever shaft. Following the rod installation, torque the castellated nuts on the tie rod ends to 2.6 mkg (18 ft. lb.) and the steering damper bolt to 4.0 to 4.5 mkg (29 to 32 ft. lb.)

9.7 Removing and Installing Steering Wheel, Steering Column, and Steering Column Tube

A new steering column was introduced on the 1975 models. This column is different in two major ways from the steering column used from 1968 through 1974. The new steering column has a different column switch assembly that is similar to the switch assembly used on later model Volkswagen Beetles. Secondly, the new column tube mounting's support and energy absorbing bracket are welded to the steering column tube instead of being separate parts as on the earlier models. Fig. 9-11 is an exploded view of the new steering column.
The components of the steering column used on 1968 through 1974 vehicles are identified in Fig. 9-12. This illustration will be helpful if you must replace any of the individual parts. The illustration also gives the names and locations of the parts. The part names will appear frequently in the following procedures. The turn signal switch, which is not shown in this illustration, should be removed or installed as described in ELECTRICAL SYSTEM.

Fig. 9-12. Component of steering column assembly

1. Spring
2. Support ring
3. Steering column bearing
4. Support head cover
5. Return for turn signal switch
6. Ball nut for upper steering lock
7. Bearing
8. Washer for lower steering lock
9. Washer for upper column tube
10. Mounting
11. Insulating ring
12. Column tube
13. Cover
14. Lower steering lock
15. Bearing screw
16. Steering lock frame
17. Cover plate
18. M 8 nut
19. Lock plate
20. M 8 bolt
21. Steering wheel nut
22. Spring washer
23. Steering wheel
24. Coupling nut
25. Lock washer
26. Filler tube nut
27. Column with locking shells
28. M 10 hexagon nut
29. Cap screw
30. Column washer
31. Bearing washer
32. Locking bolt
The steering column, together with the steering wheel and the steering column tube, can be removed from the vehicle as a unit. Individual steering column assembly components need only be removed if you are repairing the steering column.

To remove steering column assembly as a unit:

1. Disconnect the battery ground strap.
2. Disconnect the wiring of the column-mounted switches as described in Electrical System.
3. Working under the vehicle, disconnect the horn ground wire from the steering column. Then unbolt the steering column coupling from the steering gear box worm spindle.
4. Working inside the vehicle, remove the screws that hold the cover plate between the pedals.
5. Unbolt the column tube mounting's support from the dashboard. Then remove the steering column assembly from the vehicle as a unit.
6. Inspect the coupling disc. If the flexible material is worn or deteriorating, replace the disc.

CAUTION

If the vehicle has been in an accident, you should also check the bracket and the support carefully. If you find cracks or bending, replace the bracket and the support. On 1973 and later models, you must replace the entire steering column tube. Do not attempt to weld or straighten the parts. Doing so will destroy the effectiveness of the energy absorbing system.

Installation is the reverse of removal. During installation of the steering column, on 1970 and later vehicles, install the plastic coated washers for the energy absorbing column tube support as shown in Fig. 9-13. The non-energy absorbing column tube, used on the 1975 models, is installed in a similar way even though the column tube mounting's support and energy absorbing bracket are integral with the steering column tube.

NOTE

The purpose of the plastic coated washers is to let the support bracket move smoothly from the bails in the dashboard—should significant stress be imposed on the mounting. The bracket then collapses at the predetermined location and the support is deflected to the side.

If the plastic coated washers are in any way damaged—or if the column tube support has been forced off the bails by impact—you should always replace the washers.

To remove steering wheel:

1. Disconnect the horn ground wire either at the horn or at the bottom of the steering column tube.
2. On 1968 through 1972 models only, remove the screws that hold the turn signal switch to the steering column tube. Move the turn signal switch aside.
3. Carefully pry out the horn buttons, then remove the steering wheel nut. On 1973 and later models, pull the steering wheel off the steering column.
4. On 1968 through 1974 models, use a puller such as the one shown in Fig. 9-14, to pull the steering wheel off the steering column.

Fig. 9-13. Energy absorbing column tube support used on 1970 through 1974 models. The metal bracket shows the proper installation position for the plastic coated washers. The arrow indicates the bracket's predetermined collapse point.

Fig. 9-14. Puller being used to remove steering wheel from pre-1975 steering column.
If you intend to replace the steering wheel, take out the three screws that hold the cancelling ring to the bottom of the steering wheel hub. Then remove the cancelling ring so that it can be installed on the new steering wheel.

To install:

1. If necessary, install the cancelling ring on the steering wheel.

2. Center the steering. Then install the steering wheel so that its spokes are horizontal and the tab on the cancelling ring is to the left.

3. Install the steering wheel nut. On 1968 through 1974 models, torque the nut to 2.5 to 3.0 mkg (18 to 22 lb-ft). On 1975 and later models, torque the nut to 3.0 mkg (22 lb-ft).

4. Reinstall the horn button so that the contacts are upright when the steering wheel's spokes are in a horizontal position.

5. On 1968 through 1974 models, loosely install the turn signal switch. Adjust the switch on the column tube to obtain a gap of from 2.0 to 5.0 mm (0.08 to 0.20 in.) between the switch and the steering wheel. Then tighten the screws.

To remove 1968 through 1974 column tube:

1. Disconnect the battery ground strap. Remove the steering wheel. On vehicles with the ignition steering lock, turn the ignition key to its on position.

2. Remove the circlip from its groove above the rubber bushing for the steering column.

3. Working between the brackets, remove the two bending screws that hold the cover plate to the floor panel.

4. Slightly lift the column tube together with the cover plate, pull it through the firewall on the column tube, and then straighten the terminal (See Fig. 9-15). To remove steering column:

1. Disconnect the battery ground strap. Remove the steering wheel. On vehicles with the ignition steering lock, turn the ignition key to its on position.

2. Working between the brackets, remove the two bending screws that hold the cover plate to the floor panel.

3. Working under the vehicle, remove the cover plate that is beneath the pedal clusters.

4. Bend the lock plate away from the nut, and then remove the M-8 column bolt that holds the coupling flange on the steering gearbox worm spindle.

5. Remove the steering gearbox as described in 9.8 Removing and Installing Steering Gearbox.

6. Take the steering column out downward complete with the steering coupling.

Installation is the reverse of removal. If necessary, refer to 9.5 Removing and Installing Steering Gearbox. Install the drop arm and drag link as described in 9.5 Removing and Installing Drop Arm and Drag Link. Torque the steering gearbox mounting bolts to 3.5 to 5.0 mkg (25 to 36 ft-lb). On early models, torque the drop arm nut to 8.0 to 11.0 mkg (60 to 80 ft-lb); on 1975 and later models, torque to 14.0 mkg (101 ft-lb). Torque the castellated nut on the drag link end to 3.0 mkg (22 ft-lb). Advance the nut, if necessary, to uncover the cotter pin hole, then install a new cotter pin. Torque the steering wheel nut to 2.5 to 3.0 mkg (18 to 22 lb-ft).

The column types of 1975 and later vehicles cannot be removed separately as described in the following procedures. Instead, remove the steering column assembly as a unit, then separate it into its individual components.
To Install:

1. Align the insulating ring on the column tube so that both elongated holes match.

2. Coat the rubber bushing with talcum powder. Then push the column tube into the mounting and steering gear and turn the steering gear locknuts with the rubber bushing and the insulating ring.

3. Slide the cover plate together with the drain plug upward onto the column tube.

4. Install the horn ground wire on the terminal on the column tube. Then bend the terminal to roughly a right angle with the tube.

5. Push the column tube down until the hole in the tube is aligned with the locking pin of the steering column lock. Check the lock's operation.

6. Mount the cover plate on the floor panel so that the column tube is centered with the steering column.

7. Install the weather and circulate above the rubber bushing for the column tube.

8. Inspect the steering column bearing and replace it if it is faulty. Install the steering gear and the support ring with the shoulder on the support ring upward.

9. Install the steering wheel as previously described.

8.8 Removing and Installing Gearbox

Although the worm and peg steering gearbox is shown in the illustrations, the procedure for removing the late-model worm and roller gearbox is the same.

To remove:

1. On 1950 through 1974 models, remove the screws that hold the turn signal switch in the column tube, and then move the turn signal switch aside. On 1975 and later models, remove the steering column assembly as a unit.

2. Working under the vehicle, remove the cover plate that is beneath the pedal oruger.

3. Remove the drag link and drop arm as described in 8.3 Removing and Installing Drag Link and Drop Arm.

4. Bend the lockplate away from the nut, and then remove the M 8 clamp bolt that holds the coupling flange on the steering gearbox worm shaft (See Fig. 8-16).

NOTE:
The clamp bolt is the horizontal bolt. It is not necessary to remove the nut pin and then remove the lockplate nut from the bolts that hold the steering coupling together.

Installation is the reverse of removal. Make sure the gearbox is level with the column (See 8.8 Disassembling, Assembling, and Adjusting Steering Gearbox). Install the drop arm and drag link as described in 8.3 Removing and Installing Drag Link and Drop Arm. Torque the steering gearbox mounting bolts to 9.5 to 10.0 mm (35 to 36 ft lb). On early models, torque the drop arm nut to 8.0 to 11.0 Nm (56 to 80 ft. lb); on 1973 and later models, torque to 16.0 Nm (110 ft. lb). Torque the locknut on the drag link to 3.0 Nm (23 ft lb). Advance the nut 1 turn. If necessary to uncover the center pin hole, then install a new center pin. During installation, adjust the pre-1975 turn signal switch on the column tube to obtain a gap of from 2.0 to 2.00 mm (0.08 to 0.12 in.) between the switch and the steering wheel. Then tighten the screws.
9.3 Disassembling, Assembling, and Adjusting Steering Gearbox

Only the worm and peg steering gearbox (Fig. 9-18) installed on 1968 through 1972 models can be repaired. The worm and roller gearbox installed on 1973 and later models should be replaced as a unit if the worm or damper is worn or damaged. Replacement gearboxes are supplied dry and must be filled with SAE U.S. oz. (9 Imperial oz. 264 ml) of hypoid oil prior to installation.

Unless you have a torque gauge such as the one shown in the illustrations, it is not possible to adjust accurately the worm and peg steering gearbox. If the bearings are too tight, they will bind and produce excessive wear; if they are too loose, there will be excessive play in the steering.

Fig. 9-18. Worm and peg steering disassembled

1. Cover ball with washer
2. Pivot bushing screw
3. Cover
4. Steering gearcase
5. Pivot ball
6. Ring gear
7. Spring washer
8. Special washer
9. HeadPHS nut, 12-thread flange nut
10. Peg
11. Peg
12. End plate ball with washer
13. End plate ball with spring
14. Spring
15. Snap ring
16. Outer bearing outer race
17. Outer bearing inner race
18. Worm outer race
19. Worm inner race
20. Worm inner race
21. Worm gearcase
22. Worm spindle case
23. Worm spindle cap

CAUTION

If you lack the skills, tools, or a clean work area for servicing the worm and peg steering gearbox, we suggest you have such repairs done at an Authorized VW Dealer or other qualified shop. We especially urge you to consult your Authorized VW Dealer before attempting repairs on a cast iron covered by the new-car warranty.
To disassemble:

1. Thoroughly clean the outside of the gearbox—especially the parts of the worm spindle and peg shaft that project from the case.

2. Remove the four cover bolts with washers. Then remove the steering gearbox cover complete with adjusting screw and adjusting screw locknut.

3. Lift the peg shaft out upward. To remove the peg and rollers from the shaft, turn the peg counterclockwise as indicated in Fig. 9-19.

4. Remove the four end plate bolts with washers. Then remove the end plate and the shims.

5. Withdraw the worm spindle from the steering gearbox case. If necessary, remove the snap rings and disassemble the ball bearing races.

To assemble and adjust:

1. Inspect all seals and replace them if they are worn or damaged. Then install the worm spindle, the original shims, and the end plate. Attach a torque gauge as shown in Fig. 9-20.

2. Using the torque gauge turn the worm spindle. Turn fig 9-20 torque should be 2.0 to 5.0 cmkg (2 in-lb.).

3. If the turning torque is too great, add shims between the end plate and the steering gearbox case (Fig. 9-21). If the turning torque is too little, remove the shims.

NOTE

Shims are available in the following thicknesses: 0.10, 0.125, 0.15, and 0.20 mm (0.004, 0.005, 0.006, and 0.008 in.).

4. When worm spindle turning torque is correct, assemble the peg shaft. Use grease as an adhesive to hold the lapped rollers on the peg as shown in Fig. 9-22.
6. With the cylindrical end of the peg clamped between hardwood blocks in a vise, install the special washer over the threaded end of the peg with the washer's shoulder toward the tapered angles.

7. Install the spring washer, flat washer, star washer, and nut on the peg. Then torque the nut to 25 cmkg (22 in lb).

8. Remove the peg shaft from the vise. Then clamp the lower end of the shaft in the vise between soft jaws so that the peg is free to turn.

9. Install the torque gauge shown in Fig. 9-24 on the nut. Check the turning torque of the peg. It must be from 2 to 3 cmkg (2 to 3 in lb).

10. Adjust the pegs turning torque, if necessary, by tightening or loosening the nut. Then stick the nut with bleeding over one tab on the flat washer as shown in Fig. 9-23.

11. Thoroughly clean the mating surfaces of the gearbox case and the gearbox cover.

12. Clean the mating surface of the case with sealing compound. Install the cover. Then torque the four cover bolts with washers to 2.5 cmkg (2 ft lb).

CAUTION

Loosen the adjusting screw before installing the cover. The cover can be damaged if the adjusting screw contacts the peg shaft before the cover is seated on the case.

13. Fill the gearbox with 1.5 U.S. fl oz (45 Imp fl oz) of hypoid transmission oil.

14. Install the torque gauge as shown in Fig. 9-24. Then turn the steering away from its centerpoint (See 9.10 Locating Steering Centerpoint).

15. Using the torque gauge, turn the worm spindle back and forth through its centerpoint. Gradually tighten the adjusting screw until it requires approximately 24 cmkg (21 in lb) to turn the steering through the central pressure point.

16. When the correct turning torque is obtained, hold the adjuster in its optimum position while you tighten the locking nut as shown in Fig. 9-25.

NOTE

The 24 cmkg (21 in lb) specification applies only if the gear box was new or if a new case, peg and worm set bearing or seal has been installed. If these parts have had more than 2000 miles (3200 km) of service, adjust to 5 to 10 cmkg (7 to 9 in lb).

17. Fill the gearbox with 1.5 U.S. fl oz (45 Imp fl oz) of hypoid transmission oil.

Fig. 9-23. Tab on star washer prevents列入 penetrating the tab of the nut.

Fig. 9-24. Torque gauge indicates worm spindle.

Fig. 9-25. Locknut being tightened while adjusting screw is held stationary with special tool.
9.10 Locating Steering Centerpoint

Beginning with chassis No. 2114249275 manufactured during June 1971, centering marks were placed on the steering gearbox. These marks, which are indicated in Fig. 9-26, are on the steering gear case and the worm spindle cap.

![Fig. 9-26. Centering marks (arrows) placed on worm and gear casing.](image)

Whenever the worm spindle cap has been removed during repairs, the position of the cap on the worm spindle must be determined following assembly and adjustment of the steering gearbox.

To mark centerpoint:

1. Draw a thin paint or chalk line somewhere on the worm spindle as indicated in Fig. 9-27. Then install the torque gauge on the worm spindle.

![Fig. 9-27. Paint or chalk line on worm spindle, indicated by arrow A. The two centers indicated B point to the marks that must be located with the help of the torque gauge.](image)

2. Turning the worm spindle with the torque gauge, approach the center pressure point from both directions. Exactly halfway at the point where the gauge starts to indicate a higher torque—more than 5 kgf-m (40 ft.lbf)—make marks in line with the line on the worm spindle.

3. Set the mark on the spindle (arrow A in Fig. 9-28) exactly halfway between the two marks on the case (arrows B in Fig. 9-27).

![Fig. 9-28. Line on worm spindle (A) located between marks in gear box case (arrows B).](image)

4. Carefully remove torque gauge and adapter without turning the worm spindle. Alternately, you can make a third mark on the gearbox case that is in line with the centered mark on the worm spindle.

5. Liberally coat the underside of the worm spindle cap with multipurpose grease. Then, using a lube type driver, push the cap onto the worm spindle so that the lug on the cap is in line with the boss on the case.

NOTE

The alignment of the lug on the cap with the boss on the case is indicated by the dotted line in Fig. 9-29.

![Fig. 9-29. Alignment of the lug on the cap with the boss on the case.](image)

6. Again check the adjustment with the torque gauge to make sure that the cap has been properly installed.

10. Front Axle Technical Data

The technical data on the following pages contain all the dimensions and adjustment specifications needed to service, repair, or rebuild the front axle and steering. Further data on adjusting the alignment of the rear suspension can be found in TRANSMISSION AND REAR AXLE. The data given here apply equally to vehicles with manual and automatic transmission.
I. Wheel Alignment Specifications

<table>
<thead>
<tr>
<th>Designation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. Tolerances, Wear Limits, and Settings

<table>
<thead>
<tr>
<th>Designation</th>
<th>New Port limit (in.)</th>
<th>Wear Limit (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Tightening Torques for Axle and Steering

<table>
<thead>
<tr>
<th>Location</th>
<th>Designation</th>
<th>ft-lb</th>
<th>cm-kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front axle hub bearing</td>
<td>lbf</td>
<td>96-125</td>
<td>85-100</td>
</tr>
<tr>
<td>Upper shock absorber mounting</td>
<td>mnt</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Lower shock absorber mounting</td>
<td>mnt</td>
<td>25-35</td>
<td>16-25</td>
</tr>
<tr>
<td>Ball joint in steering knuckle (use new nuts in place of nuts that have been removed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint nuts for Profile Locking cam nut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile lock in steering cam nut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamps for tie rod and anti-roll bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering damper to body panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering damper to tie rod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolt for tie rod and anti-roll bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locknut for tie rod and anti-roll bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering (up to July 1972)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering gear in take-off position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross arm to shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay links to shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel to column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maneuver to steering arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling disc to steering wheel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering column to tie rod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering gear in take-off position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel to column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel to column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering (from August 1972)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering gear in take-off position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross arm to shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay links to shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel to column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel to column</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See BRAKES AND WHEELS for torque specifications related to the brakes.
FUEL SYSTEM

Contents

1. General Description
 Fuel Storage
 Pumps and Lines
 Air Cleaner
 Carburetor
 Emission Controls

2. Maintenance

3. Fuel Tank
 3.1 Removing and Installing Fuel Tank
 3.2 Fuel Gauge Sending Unit
 3.3 Treating Corroded Fuel Tank

4. Fuel Pump and Lines (carburetor engines only)
 4.1 Fuel Pump Troubleshooting
 4.2 Removing and Installing Fuel Pump
 4.3 Disassembling and Assembling Fuel Pump

5. Carburetor
 5.1 Carburetor Troubleshooting
 5.2 Synchronizing Dual Carburetors

5.3 Adjusting Idle
 Adjusting Single Carburetor
 Adjusting Dual Carburetors
 Adjusting Throttle Valve Positioner (1970 through 1971 models only)
 Adjusting Dashpot (1971 models only)
 Adjusting Dashpot (1972 through 1974 models only)
 Adjusting Accelerator Pump (single-carburetor engines)
 Adjusting Accelerator Pump (dual-carburetor engines)

5.4 Removing, Rebuilding, and Installing Carburetor
 Removing and installing Throttle Valve Positioner
 Disassembling and Assembling Carburetor
 Adjusting Fuel Level in Float Bowl
 Checking Electromagnetic Cut-off Valve
 Carburetor Installation

6. Air Cleaner
 Checking and Adjusting 1970 Intake Air Preheating System
 Checking and Adjusting 1971 Intake Air Preheating System
Fuel System

7. Checking, Repairing, and Adjusting Emission Controls
 7.1 Evaporative Emission Control
 7.2 Exhaust Gas Recirculation
 Checking and Adjusting Throttle Valve Switch (automatic transmission only)
 Checking and Adjusting Temperature Switch (automatic transmission only)

7.3 Throttle Valve Positioner
7.4 Exhaust Afterburning

a. Fuel System Technical Data
 1. Fuel Pump
 11. Carburetor Settings and Jets

TABLES
a. Fuel Pump Troubleshooting
 b. Carburetor Troubleshooting
Fuel System

The fuel system, as covered in this section of the Manual, applies mainly to the 1968 through 1974 vehicles that have carburetors. The electronic fuel injection system, introduced on the 1975 models, is covered separately in FUEL INJECTION. The data given in this section under 3. Fuel Tank and 2.1 Evaporative Emission Control apply to vehicles both with fuel injection and with carburetors. You should refer to FUEL INJECTION for all other information related to fuel injection engines—including emission control systems and air cleaner servicing. Whether they have carburetors or fuel injection, VWs covered by this Manual are designed to operate on regular (91 octane) gasoline. Fuel injection vehicles that are equipped with catalytic converters require unleaded gasoline.

The fuel system for dual-carburetor and single carburetor engines handles five main tasks necessary for proper engine operation: (1) it provides storage space for the gasoline; (2) it includes the components necessary for delivering gasoline to the engine; (3) it is responsible for admitting the proper amount of filtered air to the engine; (4) it incorporates a carburetor and emission control system for mixing fuel and air in precisely controlled proportions and delivering it to the cylinders; and (5) it modifies the density of the incoming air so that the combustion process does not produce an excess of undesirable exhaust emissions. The fourth function mentioned above that of mixing the fuel with air is handled on 1968 through 1971 models by one single-venturi downdraft carburetor. The 1972 through 1974 models have two single-venturi downdraft carburetors.

On 1968 through 1971 models, the single carburetor is mounted on top a tubular welded-steel intake manifold that has an exhaust-returned preheating pipe. On 1971 models, the cylinder heads have dual intake ports rather than the single intake port used in the heads of earlier engines. On the 1971 engines, the two outer ends of the intake manifolds are joined to billet-cast aluminum intake pipes that conduct the fuel and mixture into the cylinder head intake ports. The dual-carburetor engine introduced on the 1972 models has each carburetor mounted on a billet-cast aluminum intake manifold bolted to the top of each cylinder head. The dual manifolds are connected by a balance pipe and are heated separately by their contact with the cylinder heads.

Because many of the repairs and tune-up procedures described in this section of the Manual have a direct influence on harmful emissions, they should not be undertaken unless all prescribed equipment is available. If you lack the skills, special equipment, or tools needed for servicing and adjusting the fuel system, we suggest you leave such repair to an Authorized Volkswagen Dealer. We especially urge you to consult your Authorized Volkswagen Dealer before attempting repairs on a car still covered by the new-car warranty.